Modeling Grammaticality

Kevin Duh
Fall 2019

Today’s Outline

1. What does it mean to be grammatical?
2. Modeling grammaticality with Context-Free Grammars

Is this grammatical?

Grammar and Syntax

- Grammar: Formal rules, principles, or processes that determine valid and invalid structure in language
- Syntax: Grammar of sentences
- (We'll focus on this today)

Prescriptive vs Descriptive

- Prescriptive Grammar
- How you "ought" to speak. Otherwise, you're ungrammatical!
- e.g. Don’t split infinitives! (e.g. "to go")
- Descriptive Grammar
- Focus on describing the language as it's used
- e.g. "To boldy go where no man has gone before"
- In NLP, we do a bit of both, with probabilities

Grammaticality in perspective

- Dialect differences:
- I didn't eat dinner
- I didn't eat no dinner
- Changes in usage:
- She said, "I want to go!"
- She was, like, "I want to go!"

＂Chinese has no grammar＂ －false！

－他喝茶（Literal：He drinks tea）
－Grammar rule：Subject，Verb，Object
－我有一件黑色襯衫（I have a black shirt）
－Grammar rule：modifier＂black＂comes before modified
－All languages have grammar！

Today’s Outline

1. What does it mean to be grammatical?
2. Modeling grammaticality with Context-Free Grammars

Goal of modeling grammaticality

- We need a way to mathematically or formally capture what is grammatical and what is not.
- There are many "formalisms" for doing so. We'll cover:
- Constituency grammar (today)
- Dependency grammar (later)

Constituency grammar (aka phrase structure grammar)

- Focuses on groups of words (constituent)
- A sentence (S) is made of:
- subject, typically a noun phrase (NP)
- predicate, typically verb phrase (VP)
- NP and VP are in turn made of groups of words

Sentence

Noun Phrase the man walked to the park

Bracketing notation:
 ((the man) (walked to the park))

Sentence

Noun Phrase

the man walked to the park

Bracketing notation:
 ((the man) (walked (to (the park))))

Sentence

Noun Phrase

the man walked to the park

Add labels to each constituent

(S (NP the man) (VP walked (PP to (NP the park))))

Key:
$\mathrm{S}=$ sentence
$N P=$ noun phrase
VP = verb phrase
PP = prepositional phrase
the man walked to the park

Include pre-terminals (part-of-speech labels)

(S (NP the man) (VP walked (PP to (NP the park))))

Key:
$\mathrm{S}=$ sentence
$N P=$ noun phrase
$\mathrm{VP}=$ verb phrase
$\mathrm{PP}=$ prepositional phrase
DT = determiner
NN = noun
VBD = verb (past tense)
IN = preposition

Now we have a constiuency tree!

(S (NP the man) (VP walked (PP to (NP the park))))

Context-Free Grammar

- Syntactic Re-write Rules
- $S \rightarrow>N P V P$
- NP -> DT NN
- VP -> VBD PP
- PP $->$ IN NP
- etc
- Lexical Re-write Rules
- $\mathrm{NN} \rightarrow$ man
- DT -> the
- VBD -> walked
- $\mathrm{IN}->$ to
- NN -> park

$S \rightarrow N P$ VP
 $N P \rightarrow$ DT NN
 DT \rightarrow the DT NN VBD IN DT NN the man walked to the park

Probabilistic CFG

- Syntactic Re-write Rules
- $S \rightarrow>$ NP VP Probability=1.0
- NP —> DT NN Probability=0.7
- VP $->$ VBD PPProbability=1.0
- PP -> IN NP

Probability=1.0

- NP $->$ NNP

Probability= 0.3

- etc
- Lexical Re-write Rules
- $\mathrm{NN} \rightarrow$ man Probability=0.4
- DT $\rightarrow>$ the Probability=1.0
- VBD —> walked Probability=1.0
- IN $->$ to

Probability=1.0

- NN $->$ park Probability=0.4
- NN $->$ John Probability=0.2

Top-down generation

Ambiguities - Prepositional Phrase (PP) Attachment

Sherlock saw the man using binoculars

Ambiguities - more examples

- Coordination:
- ((laptop and monitor) with the Apple logo)
- (laptop and (monitor with the Apple logo))
- Noun compound
- ((Natural Language) Processing)
- (Natural (Language Processing))

CFG Formalism

- $\mathbf{G}=(\boldsymbol{\Sigma}, \mathbf{N}, \mathbf{S}, \mathrm{R})$
- Σ is finite set of terminal, e.g. a, b
- N is finite set of nonterminal, e.g. $A, B(V=\Sigma U N)$
- S is start symbol
- R is production rule $A \rightarrow a$ where a is V^{*}
- For PCFG, probability is attached to each R
- Chomsky Normal Form (CNF) - only these rules are allowed
- unary terminal rule $\mathrm{A} \rightarrow>\mathrm{w}$
- binary nonterminal rule $\mathrm{A} \rightarrow$ B C

Why is it called context-free?

- A rule like NP $->$ DT NN applies regardess of the neighboring context of NP
- i.e. left-hand-side of each rule is a single non-terminal symbol

Today’s Outline

1. What does it mean to be grammatical?
2. Modeling grammaticality with Context-Free Grammars
