Modeling Grammaticality

Kevin Duh Fall 2019

Today's Outline

- 1. What does it mean to be grammatical?
- 2. Modeling grammaticality with Context-Free Grammars

Is this grammatical?

a cute dog a very cute dog super cute puppy adorable puppy looking at me

dog cute a dog cut a very puppy cute super me at puppy looking adorable at

Grammar and Syntax

- Grammar: Formal rules, principles, or processes that determine valid and invalid structure in language
- Syntax: Grammar of sentences
 - (We'll focus on this today)

Prescriptive vs Descriptive

- Prescriptive Grammar
 - How you "ought" to speak. Otherwise, you're ungrammatical!
 - e.g. Don't split infinitives! (e.g. "to go")
- Descriptive Grammar
 - Focus on describing the language as it's used
 - e.g. "To boldy go where no man has gone before"
- In NLP, we do a bit of both, with probabilities

Grammaticality in perspective

- Dialect differences:
 - I didn't eat dinner
 - I didn't eat no dinner
- Changes in usage:
 - She said, "I want to go!"
 - She was, like, "I want to go!"

"Chinese has no grammar" — false!

- 他喝茶 (Literal: He drinks tea)
 - Grammar rule: Subject, Verb, Object
- 我有一件黑色襯衫 (I have a black shirt)
 - Grammar rule: modifier "black" comes before modified
- All languages have grammar!

Today's Outline

- 1. What does it mean to be grammatical?
- 2. Modeling grammaticality with Context-Free Grammars

Goal of modeling grammaticality

- We need a way to mathematically or formally capture what is grammatical and what is not.
- There are many "formalisms" for doing so. We'll cover:
 - Constituency grammar (today)
 - Dependency grammar (later)

Constituency grammar (aka phrase structure grammar)

- Focuses on groups of words (constituent)
- A sentence (S) is made of:
 - subject, typically a noun phrase (NP)
 - predicate, typically verb phrase (VP)
- NP and VP are in turn made of groups of words

Add labels to each constituent

(S (NP the man) (VP walked (PP to (NP the park)))

Key: S = sentence NP = noun phrase VP = verb phrase PP = prepositional phrase

the man walked to the park

Include pre-terminals (part-of-speech labels)

(S (NP the man) (VP walked (PP to (NP the park)))

Key: S = sentence NP = noun phrase VP = verb phrase PP = prepositional phrase DT = determiner NN = noun VBD = verb (past tense) IN = preposition

Now we have a constiuency tree!

Context-Free Grammar

- Syntactic Re-write Rules
 Lexical Re-write Rules
 - S -> NP VP
 - NP —> DT NN
 - VP −> VBD PP
 - PP -> IN NP
 - etc

- - NN —> man
 - DT -> the
 - VBD —> walked
 - IN -> to
 - NN -> park

Probabilistic CFG

- Syntactic Re-write Rules
 • Lexical Re-write Rules
 - S -> NP VP Probability=1.0
 - NP -> DT NN Probability=0.7
 - VP -> VBD PPProbability=1.0
 - PP -> IN NP **Probability=1.0**
 - NP -> NNP Probability=0.3
 - etc

- NN -> man Probability=0.4
- DT -> the **Probability=1.0**
- VBD -> walked Probability=1.0
- IN -> to Probability=1.0
- NN -> park Probability=0.4
- NN -> John Probability=0.2

Top-down generation

Ambiguities - Prepositional Phrase (PP) Attachment

Sherlock saw the man using binoculars

Ambiguities - more examples

- Coordination:
 - ((laptop and monitor) with the Apple logo)
 - (laptop and (monitor with the Apple logo))
- Noun compound
 - ((Natural Language) Processing)
 - (Natural (Language Processing))

CFG Formalism

• G=(Σ,N,S,R)

- Σ is finite set of terminal, e.g. a, b
- N is finite set of nonterminal, e.g. A, B (V = Σ U N)
- S is start symbol
- R is production rule A $-> \alpha$ where α is V^{*}
- For PCFG, probability is attached to each R
- Chomsky Normal Form (CNF) only these rules are allowed
 - unary terminal rule A —> w
 - binary nonterminal rule A −> B C

Why is it called context-free?

- A rule like NP —> DT NN applies regardess of the neighboring context of NP
- i.e. left-hand-side of each rule is a single non-terminal symbol

Today's Outline

- 1. What does it mean to be grammatical?
- 2. Modeling grammaticality with Context-Free Grammars