
Probabilities and Language Models

Kevin Duh

Lecture Notes for Natural Language Processing, Fall 2019

1 Probability Basics

Natural language processing involves ambiguity resolution. Probability and
statistics are effective frameworks to tackle this. Here, we will define some
basic concepts in probability required for understanding language models and
their evaluation.

Definitions

• Event space E : the set of all possible outcomes

• Event E ⊆ E : a subset of the event space

• Probability P (E): a non-negative number assigned to an event, indicating
it’s probability of occurrence

Event Space E Event E Probability P (E)
The output of a {Head, Tail} {Head} P ({Head}) = 0.5
coin flip {Tail} P ({Tail}) = 0.5
The output of a {1, 2, 3, 4, 5, 6} {1} P ({1}) = 1/6
dice roll {1,3,5} P ({1, 3, 5}) = 0.5
The word after {is, was, ...} {is} P ({is}) = 0.7
”Hi, my name...” all vocabulary {was} P ({was}) = 0.1
A random sentence all sentences P({“To be or not to be”}) = 1E-5
from Shakespeare P({“That’s all, folks!”}) = 1E-9

Table 1: Example of events and their probability

Axioms of Probability

1. P (E) ≥ 0 for all events E. Each subset of event space is assigned some
probability of occurrence (may be zero).

2. P (E) = 1.

1

3. If two E1 and E2 are disjoint, then P (E1orE2) = P (E1) + P (E2). Dice roll
example: P ({1, 3, 5}) = P ({1})+P ({3})+P ({5}) = 1/6+1/6+1/6 = 0.5.
Extends to P (∪ni=1Ei) =

∑n
i=1 P (Ei) for mutually-exclusive Ei’s.

Random Variable A random variable X is a variable whose possible values
are the outcomes of some random trial, e.g. a coin flip. This can be discrete
(e.g. Head or Tail) or continuous (e.g. any real number between 0 and ∞).

A probability mass function p(x) is a function that assigns probability when
a discrete random variable X is equal to some value x.

p(x)
def
= P (X = x) (1)

Dice roll example: Let x be 1. p(1) = P (X = 1) = 1/6; this is the probabil-
ity we assign to the event X = 1. We also call p(x) the probability distribution.
For continuous random variables, we will be using a probability density func-
tion f(x) to characterize the distribution; it defines probability on intervals:

P (a ≤ X ≤ b) =
∫ b

a
f(x)dx.

Later in the course, we will be exploring many ways to “learn” a probability
distribution from data. This distribution might be a multinomial distribution
(which can be viewed as a table, with p(x) values for each x), or a some log-linear
parameterization, or some output of a softmax layer after a neural network. In
all cases, we’ll be using notation x ∼ Distribution(θ) which means x is a sample
drawn from the distribution with parameters θ.

Joint Probability Sometimes we care about the probability of two or more
variables, and they might interact. This can be modeled by a joint probability
of e.g. two variables X and Y :

p(x, y)
def
= P (X = x, Y = y) (2)

Say we flip two coins, where X represents the output of the first coin and Y
represents that of the second coin. Our event space is:

E = {(Head,Head), (Head, Tail), (Tail, Tail), (Tail,Head)} (3)

and the probabilities are each 1/2× 1/2 = 1/4, e.g. p((Head, Tail)) = 1/4. In
this case, the two events do not influence each other, so the probability of both
occurring is simply the product of their probabilities: p(x, y) = p(x)p(y). We
say that X and Y are independent.

Now consider a weather example, where we have two variables: X for rain
and Y for cloud. Each event has two possible outcomes: {True, False}, so there
are four possible outcomes in the joint event space. Suppose we observe, out of
12 days, the outcomes shown in Table 2.

We can compute the marginal probability from the joint probability by sum-
ming out the variable that is not considered: p(x) =

∑
y p(x, y) and p(y) =∑

x p(x, y). In the weather example: P(Rain=True)

= P(Rain=True and Cloud=True) + P(Rain=True and Cloud=False) = 3/12
+ 0/12 = 3/12.

2

Joint Probability Cloud=True Cloud=False Marginal p(Rain)
Rain=True 3/12 0/12 3/12
Rain=False 1/12 8/12 9/12

Marginal p(Cloud) 4/12 8/12

Table 2: Weather example: Joint and Marginal probabilities for Rain and Cloud

Definition of Independence Two variables are independent if and only if
(iff) their joint probability is a product of the marginal probabilities. We see this
is not the case for the weather example, e.g. P(Rain=True) × P(Cloud=True)
= 3/12×4/12 6= P(Rain=True and Cloud=True). Naturally, rain can’t happen
without clouds.

Conditional Probability Continuing from the weather example, we can ask
“What’s the probability of rain, given that we already know it is cloudy?” This is
a conditional probability, which we would write as P(Rain=True | Cloud=True).
Formally,

p(x | y)
def
=

p(x, y)

p(y)
(4)

One can interpret this definition as restricting the sample space to situa-
tions where the conditioning factor occurs.1 So P(Rain=True | Cloud=True) =
P(Rain=True and Cloud=True) ÷ P(Cloud=True) = 3/12 ÷ 4/12 = 3/4.

Note that if two variables are independent, the p(x | y) = p(x)p(y)
p(y) = p(x).

This means knowledge of y does not tell us anything about x.

Chain Rule The conditional probability definition (Eq. 4) can be extended to

more variables. First, start with p(x | y, z) def
= p(x,y,z)

p(y,z) . Also, p(y | z) def
= p(y,z)

p(z) .

Putting the two together, we get:

p(x, y, z) = p(x | y, z)p(y | z)p(z) (5)

In general, the chain rule says that a joint probability can be decomposed
into a series of conditional probabilities like the form above.

1Take as another example the discussion of random sentence generation by PCFG in pre-
vious lectures. We have a grammar that generates many types of sentences, s1, s2, s3, At
the same time, the sentence s1 may have been generated by two different trees ta and tb.
What if we want to know the probability of a specific tree ta given s1? We would calculate

the conditional probability p(ta|s1) =
p(ta,s1)
p(s1)

=
p(ta,s1)

p(ta,s1)+p(tb,s1)
. The division by p(s1)

re-normalizes the probabilities to focus on cases where s1 occurred. p(ta, s1) and p(tb, s1) can
be obtained from our PCFG by multiplying the rule probabilities.

3

Bayes Rule Bayes Rule says:

p(x | y) =
p(y | x)p(x)

p(y)
(6)

This can be derived from our definition of conditional probability. First,
from Eq. 4, we get p(x, y) = p(x|y)p(y) and p(y, x) = p(y|x)p(x). Next, we
know p(x, y) = p(y, x), so p(x|y)p(y) = p(y|x)p(x). Finally, assuming non-zero
probabilities, we can divide through by p(y) to get: p(x|y) = p(y|x)p(x)/p(y).

Bayes Rule can be viewed as a way to link p(x | y) and p(y | x). In this case,
we’ll call p(x) the prior, p(y | x) the likelihood, and p(x | y) the posterior. Now,
can you compute P(Cloud=True | Rain=True) using Bayes Rule?

2 Entropy and Perplexity

Definition of Information Let E be some event with occurs with probability
P (E). If I told you that E occurred, then I have given you

I(E) = − log2 P (E) (7)

bits of information. Why does this make sense to define information in terms
of probabilities? Suppose you know that it almost never rains but I tell you
that it just rained. That’s is a valuable information. But if it always rains
and I tell you it just rained, that’s little information for you. One can think of
information as the amount of surprise when observing E, or alternatively, the
amount of bits needed to communicate about E.

More examples. How much information is in...

• the outcome of a fair coin flip? − log2 1/2 = 1 bit. I can use bit 0 to tell
you that the outcome it’s Head and bit 1 to tell you the outcome is Tail.

• the outcome of two fair coin flips? − log2 1/4 = 2 bits. Note that infor-
mation is additive.

• the outcome of a dice roll? − log2 1/6 = 2.59 bits.

• drawing a random word from a 10000 vocab? − log2 1/10000 = 13.29 bits.

Entropy Now, suppose we have a distribution p(x) with K possible values
x1, x2, . . . , xK in its event space. What is the average amount of information
in observing the samples from this distribution?

H(p) =

K∑
k=1

P (X = xk)I(xk) =

K∑
k=1

p(xk)I(xk) = −
K∑

k=1

p(xk) log2 p(xk) (8)

This is called entropy in information theory, and it is a function fully charac-
terized by the distribution p(x). One can think of entropy as the average amount

4

of surprise of a distribution. Note that entropy is by definition non-negative.
What kind of distribution has higher entropy: one with uniform probabilities,
or one with skewed probabilities?

Cross-Entropy Let’s say we don’t know the true distribution (denoted p∗(x))
that generated our data. We have some model (denoted p(x)) that attempts to
approximate this distribution. We want to know how good the model is. Anal-
ogous to our definition of entropy, we can answer this by asking how surprised
our model is on average when tested on data generated by p∗(x).

Let’s say draw K random samples from p∗(x). To be more precise in our
notation, we will say that we have K random variables indexed by k, and each
variable Xk could take some value in the event space {x1, x2, . . . , xM}. For
example, suppose K = 5 and we first drew x2 three times, followed by x5
once, and then x3 once. This is the sequence of events: X1 = x2, X2 = x2,
X3 = x2,X4 = x5, X5 = x3, and their probabilities are: P ∗(X1 = x2), P ∗(X2 =

x2), P ∗(X3 = x2),P ∗(X4 = x5), P ∗(X5 = x3). Note that if P ∗(X = x2)
def
=

p ∗ (x2) is high, then we should draw it many times. In other words, we can
use the sequences of draws X1 = x2, X2 = x2, X3 = x2,X4 = x5, X5 = x3 to
approximate the true distribution p(xm). In the limit as K → ∞, we can get
the true distribution.

Now we can define cross-entropy:

H(p∗, p) =

M∑
m=1

P ∗(X = xm)I(xm) ≈ 1

K

K∑
k=1

I(xm) = − 1

K

K∑
k=1

log2 P (Xk = xm)

(9)
Note the first approximation follows because we are approximating the true

distribution with the K test samples. In the context of language models, this
means preparing some test sentences and measuring our language model prob-
abilities on them.

Perplexity Perplexity is simply defined as 2cross−entropy. In other words,
given some test set of x1, x2, . . . , xK samples, the perplexity (PPL) of a model
p is calculated by:

PPL = 2−
1
K

∑K
k=1 log2 P (Xk=xm) (10)

A nice interpretation of perplexity is that it measures the “branching factor.”
Cross-entropy measures uncertainty in terms of bits, but when exponentiated it
measures the size of an equally weighted distribution with uniform probability.
Consider an unfair dice with entropy of 2.32 bits rather than − log2 1/6 =
2.59 bits; its perplexity is 22.32 ≈ 5, which means it has the same amount of
information as a 5-sided dice with equal probabilities (− log2 1/5 = 2.32).

5

3 Language Models

We are interested in computing the probability of a sentence. This is use-
ful for many applications in NLP. Suppose a sentence is represented by ~w =
w1w2 · · ·wn (a sequence of n words); then by chain rule, we can calculate the
probability of the sentence as the product of conditional word prediction prob-
abilities:

p(~w) = p(wn | wn−1, wn−2, . . . , w1)× p(wn−1 | wn−2, . . . , w1)

× p(wn−2 | wn−3, . . . , w1)× p(wn−3 | wn−4, . . . , w1)

× p(wn−4 | wn−5, . . . , w1)× . . .× p(w2 | w1)× p(w1)

Recall in Table 1, we have the model that tries to predict the next word
given some prefix. This is such a model.

How do we estimate these conditional probabilities? One way is use a train-
ing set of raw sentences and count the frequency of sub-sequences:

p(w2 | w1) =
Count(“w1w2”)

Count(“w1”)
(11)

This is known as the maximum likelihood estimate (MLE) because it
is a setting a probabilities that maximizes the likelihood on the training data.

However, there are some problems: for long sub-sequences, we may not have
sufficient data to trust this probability estimate. One solution is to simplify the
conditional probabilities.

N-gram N-gram language models make independence assumptions about the
conditional probabilities, such as p(w3 | w2, w1) ≈ p(w3 | w2). This is a Markov
independence assumption that says the probability of a word only depends
on its closest previous words.

A trigram language model defines

p(~w)
def
=

n+1∏
i=1

p(wi | wi−2, wi−1) (12)

A bigram language model defines

p(~w)
def
=

n+1∏
i=1

p(wi | wi−1) (13)

A unigram language model defines

p(~w)
def
=

n+1∏
i=1

p(wi) (14)

6

Usually, we would add beginning-of-sentence (BOS) and end-of-sentence (EOS)
tokens2 The index i runs to n + 1 to account of EOS. For the beginning of the
sentence, we will pad with BOS like this for bigrams p(w1 | BOS) and trigrams
p(w1 | BOS, BOS) .

Training and Test set At this time, we need to clarify the important dis-
tinction between training data and test data. Training data are sentences used
to estimate probabilities for the language model; we extract counts from the
training data to estimate probabilities like Eq. 11.

Importantly, the test set is a dataset that does not overlap with the training
set. Using the model trained on the training set, we measure its cross-entropy
(or perplexity) on the test set. This division is important to ensure a fair
evaluation.

Sometimes, the test set may contain words that are not observed in the
training data. This is known as out-of-vocabuarly words or unknown words,
and are mapped to the <unk> token. There are two ways to deal with this in a
n-gram language model. For a closed-vocabulary model, we assume the list of
vocabulary is fixed at training time and do not generate probabilities for <unk>.
For a open-vocabulary model, we may heuristically convert some tokens in the
training set to <unk> and estimate its probability as if its like any other word
token.

When talking about datasets, researchers often report statistics in terms
of tokens and types. The number of tokens in a sentence dataset (a.k.a.
corpus) is the total word count; the number of types measures the number of
distinct words, i.e. the vocabulary size. Language model performance in terms
of perplexity depends on many factors, including the size of the training corpus,
its OOV rate and genre/style similarities with respect to the test corpus.

N-gram Smoothing Even with the Markov assumption, our n-gram may still
have unreliable probabilities, especially for infrequent or unknown n-grams. For
example, suppose we wish to estimate p(wi | ”is”, ”name”, ”my”). There are
many possible person-names that can have high probability, but it is unlikely
that we have all of them in this particular sequence in the training data.

The solution is to reserve probability mass for these zero-count n-grams,
or to add probability mass to infrequent n-grams. Since probabilities need to
normalize, we will be moving probability mass from high-count n-grams. This
is called smoothing, and there is a rich class of techniques for doing so.

As an example, we will explain Add-one smoothing for unigrams. In
standard MLE, the unigram is estimated as p(wi) = ci/N where ci = Count(wi)
and N is the total number of tokens in the training set. Add-one smoothing
will instead estimate:

2Sometimes BOS and EOS are used interchangeably with <s> and </s> to model words
at sentence boundaries. Other times one refers to an explicit sentence boundary that is also
treated as a word token while the other is used to implement stopping in the language model.

7

padd−one(wi) =
ci + 1

N + V
(15)

V is the vocabulary size (i.e. number of types) and is needed for normalization.
This addition has the effect of increasing the probability of infrequent unigrams
at the expense of the frequent ones.

N-gram Interpolation and Back-off In practice, smoothing is used in con-
junction with interpolation or backoff techniques. Suppose we are building a
trigram model and on’t have sufficient data to estimate a particular conditional
probability p(wi | wi−2, wi−1). We can approximate it by a simpler model
p(wi | wi−1), which ought to have more data.

In interpolation, we combine these models:

pinterp(wi | wi−2, wi−1) = λ1p(wi | wi−2, wi−1) + λ2p(wi | wi−1) (16)

In backoff, we dynamically switch models:

pbackoff (wi | wi−2, wi−1) =

{
p(wi | wi−2, wi−1) if Count(wi, wi−2, wi−1) > τ

α(wi−2, wi−1) · p(wi | wi−1) otherwise

Note that λ and α need to be set so that the probability normalizes correctly.
You are encouraged to read the textbook to learn about other smoothing meth-
ods.

8

