# Log-Linear Models 

Kevin Duh
Intro to NLP, Fall 2019

## Motivation

- We want to estimate $p(y \mid x)$
- e.g. $P(Y=$ word $\mid X=$ previous_words $)$
- e.g. $P(Y=$ label $\mid X=$ document $)$
- In the n-gram lectures, we estimated this by counts:
- $P(Y=$ word $\mid X=$ previous words $)=$ Count(word, previous_words) / Count(previous_words)
- Smoothing alleviates unreliable estimates


## Outline

1. What is a Log-Linear Model and why use it?
2. How to train it?
3. Interactive visualization

## Motivation

- A different approach to estimate $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$
- Log-linear model:
- enables us to incorporate our knowledge of the problem by defining features of $x, y$


## Log-Linear Model Definition

$$
\begin{aligned}
p(y \mid x) & \propto \operatorname{score}(x, y) \\
\operatorname{score}(x, y) & =\sum_{k} \theta_{k} f_{k}(x, y)
\end{aligned}
$$

1. Define $K$ feature functions $f()$, each measuring something about $x$ and $y$
2. The probability depends on a weighted combination of $f()$
3. Weights are learned from training data

## Example features for word

 prediction $p\left(w_{n} \mid w_{n-1}, w_{n-2}\right)$$$
P\left(W_{n}=" S a m " \mid W_{n-1}=" a m ", W_{n-2}=" I "\right)
$$

$f_{1}(x, y)=$
$f_{2}(x, y)=$
$f_{3}(x, y)=$
$f_{4}(x, y)=$
$f_{5}(x, y)=$
$f_{6}(x, y)=$
$f_{7}(x, y)=$
$f_{8}(x, y)=$
$f_{9}(x, y)=$
$f_{10}(x, y)=$

Count("I am Sam")
1/Count("I am")
Count("am Sam") 1/Count("am") Count("Sam")
$p_{\text {add-one-smooth }}$ ("Sam"|"I am")
$p_{\text {add-two-smooth }}(" S a m " \mid " I ~ a m ")$

$$
p_{\text {add-one-smooth }}(" S a m " \mid " \mathrm{I} ")
$$

$I$ ("Sam" is capitalized)
$I$ ("Sam" is Noun and previous word is Verb)

## Log-Linear Model Definition

We said $\quad p(y \mid x) \propto \operatorname{score}(x, y)$
Get familiar with it
More precisely, Log-Linear models are defined as:

$$
p(y \mid x)=\frac{1}{Z(x)} \exp (\operatorname{score}(x, y))=\frac{1}{Z(x)} \exp \left(\sum_{k=1}^{K} \theta_{k} f(x, y)\right)
$$

Normalization:

$$
Z(x)=\sum_{y^{\prime}} \exp \left(\operatorname{score}\left(x, y^{\prime}\right)\right)
$$

It's called Log-Linear because $\log (\mathbf{p}(\mathbf{y} \mid \mathrm{x}))$ is a linear function. Sometimes also called Maximum Entropy (MaxEnt) or Multinomial Logistic Regression

## Outline

1. What is a Log-Linear Model and why use it?
2. How to train it?
3. Interactive visualization

## Training the parameters

We're given training data: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)$
Want to find parameters that maximize likelihood on training data:

$$
p(\text { training data } ; \vec{\theta})=\prod_{n=1}^{N} p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)
$$

$$
\begin{array}{r}
p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)=\frac{1}{Z(x)} \exp \left(\sum_{k=1}^{K} \theta_{k} f\left(x_{n}, y_{n}\right)\right) \\
\vec{\theta}=\left[\theta_{1}, \theta_{2}, \ldots, \theta_{K}\right]
\end{array}
$$

Equivalent to maximizing the log-likelihood:

$$
\sum_{n=1}^{N} \log \left(p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)\right)
$$

## Side-note: Probability vs. Likelihood

- Parameter known. Data unknown.
- I know a coin is biased with this parameter: $\mathrm{P}($ Flip $=H)=0.7, \mathrm{P}($ Flip=T $)=0.3$
- Question: If I flip 3 times, what is the probability I'll get HHH? 0.7x0.7x0.7=0.34
- Data known. Parameter unknown.
- I know that I flipped 3 times and got HHH.
- Question: What's my estimate of the biasness of the coin? i.e. $\mathrm{P}(\mathrm{Flip}=\mathrm{H})=$ ???
- Maximum likelihood solution is $\mathrm{P}(\mathrm{Flip}=\mathrm{H})=1.0, \mathrm{P}(\mathrm{Flip}=\mathrm{T})=0.0$.
- $\operatorname{Try} \mathrm{P}($ Flip $=\mathrm{H})=1$. Likelihood $=1.0 \times 1.0 \times 1.0=1.0$
- Try $\mathrm{P}(\mathrm{Flip}=\mathrm{H})=0.7$. Likelihood $=0.7 \times 0.7 \times 0.7=0.34$


## Regularization Term

- Large weights may lead to $p(y \mid x)$ which may vary largely due to small changes in input
- Encourage weights to be small by adding a penalty
- L2 regularization:

$$
\|\vec{\theta}\|^{2}=\left(\sqrt{\theta_{1}^{2}+\theta_{2}^{2}+\ldots+\theta_{K}^{2}}\right)^{2}=\sum_{k=1}^{K} \theta_{k}^{2}
$$

## Loss Function (or Objective Function)

- Goal: Find parameters that minimize this Loss Function, Negative Log-Likelihood + Regularizer

$$
L(\vec{\theta})=-\sum_{n=1}^{N} \log \left(p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)\right)+\|\vec{\theta}\|^{2}
$$

- We can use various optimization techniques. Think back to your Calculus class.


## Training by Gradient Descent

- The gradient of a function points to the direction of steepest increase in that function

$$
\nabla L(\vec{\theta})=\left[\frac{\partial L(\vec{\theta})}{\partial \theta_{1}} ; \frac{\partial L(\vec{\theta})}{\partial \theta_{2}} ; \cdots ; \frac{\partial L(\vec{\theta})}{\partial \theta_{K}}\right]
$$

- Gradient Descent Algorithm: start with some random parameter, keep going in the opposite gradient direction
- Like how you ski down a mountain



## Training by Gradient Descent

- Exercise: Compute partial derivatives of loss function

$$
L(\vec{\theta})=-\sum_{n=1}^{N} \log \left(p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)\right)+\|\vec{\theta}\|^{2}
$$

- Regularizer part:

$$
\frac{\partial\|\vec{\theta}\|^{2}}{\partial \theta_{1}}=\frac{\partial\left(\sqrt{\theta_{1}^{2}+\theta_{2}^{2}+\ldots+\theta_{K}^{2}}\right)}{\partial \theta_{1}}=\frac{\partial\left(\theta_{1}^{2}+\theta_{2}^{2}+\ldots+\theta_{K}^{2}\right)}{\partial \theta_{1}}=\frac{\partial\left(\theta_{1}^{2}\right)}{\partial \theta_{1}}=2 \theta_{1}
$$

- Likelihood part:

$$
\frac{\partial\left(-\sum_{n=1}^{N} \log p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)\right)}{\partial \theta_{1}}=\sum_{n=1}^{N} \frac{\partial\left(-\log p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)\right)}{\partial \theta_{1}}
$$

## Gradient Descent and Stochastic Gradient Descent (SGD)

- Gradient Descent Algorithm:
- Start with some parameter $\vec{\theta}$
- While not converged:
- Update parameter $\vec{\theta}:=\vec{\theta}-\eta \nabla L(\vec{\theta})$
- SGD:

$$
\sum_{n=1}^{N} \frac{\partial\left(-\log p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)\right)}{\partial \theta_{1}} \approx \sum_{n: s u b s e t} \frac{\partial\left(-\log p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)\right)}{\partial \theta_{1}}
$$



## Summary

- Log-Linear Model has this form:

$$
p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)=\frac{1}{Z(x)} \exp \left(\sum_{k=1}^{K} \theta_{k} f\left(x_{n}, y_{n}\right)\right)
$$

- Features enable us to incorporate knowledge of the problem
- Given training data, we fit parameters to maximize likelihood (optionally with a regularization term)

$$
p(\text { training data } ; \vec{\theta})=\prod_{n=1}^{N} p\left(y_{n} \mid x_{n} ; \vec{\theta}\right)
$$

## Interactive Visualization

- http://www.cs.jhu.edu/~jason/465/hw-prob/loglin/\#1

Log-Likelihood Scores
Current LL:

-Type Counts: Observed and Expected



