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Motivation
• We want to estimate p(y|x)


• e.g. P( Y=word | X = previous_words )


• e.g. P( Y=label | X = document )


• In the n-gram lectures, we estimated this by counts:


• P( Y=word | X = previous words ) =                  
Count(word, previous_words) / Count(previous_words)


• Smoothing alleviates unreliable estimates



Outline

1. What is a Log-Linear Model and why use it?


2. How to train it?


3. Interactive visualization



Motivation

• A different approach to estimate p(y|x) 


• Log-linear model: 


• enables us to incorporate our knowledge of the 
problem by defining features of x,y 



Log-Linear Model Definition

1. Define K feature functions f(), each measuring something 
about x and y


2. The probability depends on a weighted combination of f()


3. Weights are learned from training data

score(x, y) =
X

k

✓kfk(x, y)

p(y|x) / score(x, y)



Example features for word 
prediction
P (Wn = “Sam” | Wn�1 = “am”,Wn�2 = “I”)

p(wn | wn�1, wn�2)

f1(x, y) = Count(“I am Sam”)

f2(x, y) = 1/Count(“I am”)

f3(x, y) = Count(“am Sam”)

f4(x, y) = 1/Count(“am”)

f5(x, y) = Count(“Sam”)

f6(x, y) = padd�one�smooth(“Sam” | “I am”)

f7(x, y) = padd�two�smooth(“Sam” | “I am”)

f8(x, y) = padd�one�smooth(“Sam” | “I”)
f9(x, y) = I(“Sam” is capitalized)

f10(x, y) = I(“Sam” is Noun and previous word is Verb)



Log-Linear Model Definition

p(y|x) / score(x, y)

Z(x) =
X

y0

exp(score(x, y0))

p(y | x) = 1

Z(x)
exp(score(x, y)) =

1

Z(x)
exp(

KX

k=1

✓kf(x, y))

We said

More precisely, Log-Linear models are defined as:

Normalization:

It’s called Log-Linear because log(p(y|x)) is a linear function.  
Sometimes also called Maximum Entropy (MaxEnt) or Multinomial Logistic Regression

Main Concept!  
Get familiar with it
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Training the parameters
We’re given training data:

Want to find parameters that maximize likelihood on training data: 

p(training data; ~✓) =
NY

n=1

p(yn|xn; ~✓)

Equivalent to maximizing the log-likelihood:
NX

n=1

log(p(yn|xn; ~✓))

(x1, y1), (x2, y2), . . . , (xN , yN )

~✓ = [✓1, ✓2, . . . , ✓K ]

p(yn | xn; ~✓) =
1

Z(x)
exp(

KX

k=1

✓kf(xn, yn))



Side-note: Probability vs. Likelihood

• Parameter known. Data unknown. 

• I know a coin is biased with this parameter: P(Flip=H)=0.7, P(Flip=T)=0.3


• Question: If I flip 3 times, what is the probability I’ll get HHH? 0.7x0.7x0.7=0.34


• Data known. Parameter unknown. 

• I know that I flipped 3 times and got HHH. 


• Question: What’s my estimate of the biasness of the coin? i.e. P(Flip=H)=???


• Maximum likelihood solution is P(Flip=H)=1.0, P(Flip=T)=0.0. 


• Try P(Flip=H)=1. Likelihood = 1.0 x 1.0 x 1.0 = 1.0


• Try P(Flip=H)=0.7. Likelihood = 0.7x0.7x0.7=0.34



Regularization Term

• Large weights may lead to p(y|x) which may vary largely 
due to small changes in input


• Encourage weights to be small by adding a penalty


• L2 regularization:

||~✓||2 =

✓q
✓21 + ✓22 + . . .+ ✓2K

◆2

=
KX

k=1

✓2k



Loss Function  
(or Objective Function)

• Goal: Find parameters that minimize this Loss Function, 
Negative Log-Likelihood + Regularizer


• We can use various optimization techniques. Think back 
to your Calculus class.

L(~✓) = �
NX

n=1

log(p(yn|xn; ~✓)) + ||~✓||2



Training by Gradient Descent

• The gradient of a function points to the direction of 
steepest increase in that function

rL(~✓) =

"
@L(~✓)

@✓1
;
@L(~✓)

@✓2
; · · · ; @L(

~✓)

@✓K

#

• Gradient Descent Algorithm: start with some random 
parameter, keep going in the opposite gradient direction


• Like how you ski down a mountain





Training by Gradient Descent

• Exercise: Compute partial derivatives of loss function

L(~✓) = �
NX

n=1

log(p(yn|xn; ~✓)) + ||~✓||2

• Regularizer part:

@||~✓||2

@✓1
=

@
⇣p

✓21 + ✓22 + . . .+ ✓2K
2
⌘

@✓1
=

@
�
✓21 + ✓22 + . . .+ ✓2K

�

@✓1
=

@
�
✓21
�

@✓1
= 2✓1

• Likelihood part:

@
⇣
�
PN

n=1 log p(yn | xn; ~✓)
⌘

@✓1
=

NX

n=1

@
⇣
� log p(yn | xn; ~✓)

⌘

@✓1



Gradient Descent and  
Stochastic Gradient Descent (SGD)

• Gradient Descent Algorithm:


• Start with some parameter


• While not converged:


• Update parameter


• SGD:

NX

n=1

@
⇣
� log p(yn | xn; ~✓)

⌘

@✓1
⇡

X

n:subset

@
⇣
� log p(yn | xn; ~✓)

⌘

@✓1

~✓

~✓ := ~✓ � ⌘rL(~✓)





Summary
• Log-Linear Model has this form:

p(training data; ~✓) =
NY

n=1

p(yn|xn; ~✓)

p(yn | xn; ~✓) =
1

Z(x)
exp(

KX

k=1

✓kf(xn, yn))

• Features enable us to incorporate knowledge of the problem


• Given training data, we fit parameters to maximize likelihood 
(optionally with a regularization term)



Interactive Visualization
• http://www.cs.jhu.edu/~jason/465/hw-prob/loglin/#1

http://www.cs.jhu.edu/~jason/465/hw-prob/loglin/#1

