
Log-Linear Models

Kevin Duh

Intro to NLP, Fall 2019

Motivation
• We want to estimate p(y|x)

• e.g. P(Y=word | X = previous_words)

• e.g. P(Y=label | X = document)

• In the n-gram lectures, we estimated this by counts:

• P(Y=word | X = previous words) =
Count(word, previous_words) / Count(previous_words)

• Smoothing alleviates unreliable estimates

Outline

1. What is a Log-Linear Model and why use it?

2. How to train it?

3. Interactive visualization

Motivation

• A different approach to estimate p(y|x)

• Log-linear model:

• enables us to incorporate our knowledge of the
problem by defining features of x,y

Log-Linear Model Definition

1. Define K feature functions f(), each measuring something
about x and y

2. The probability depends on a weighted combination of f()

3. Weights are learned from training data

score(x, y) =
X

k

✓kfk(x, y)

p(y|x) / score(x, y)

Example features for word
prediction
P (Wn = “Sam” | Wn�1 = “am”,Wn�2 = “I”)

p(wn | wn�1, wn�2)

f1(x, y) = Count(“I am Sam”)

f2(x, y) = 1/Count(“I am”)

f3(x, y) = Count(“am Sam”)

f4(x, y) = 1/Count(“am”)

f5(x, y) = Count(“Sam”)

f6(x, y) = padd�one�smooth(“Sam” | “I am”)

f7(x, y) = padd�two�smooth(“Sam” | “I am”)

f8(x, y) = padd�one�smooth(“Sam” | “I”)
f9(x, y) = I(“Sam” is capitalized)

f10(x, y) = I(“Sam” is Noun and previous word is Verb)

Log-Linear Model Definition

p(y|x) / score(x, y)

Z(x) =
X

y0

exp(score(x, y0))

p(y | x) = 1

Z(x)
exp(score(x, y)) =

1

Z(x)
exp(

KX

k=1

✓kf(x, y))

We said

More precisely, Log-Linear models are defined as:

Normalization:

It’s called Log-Linear because log(p(y|x)) is a linear function.
Sometimes also called Maximum Entropy (MaxEnt) or Multinomial Logistic Regression

Main Concept!
Get familiar with it

Outline

1. What is a Log-Linear Model and why use it?

2. How to train it?

3. Interactive visualization

Training the parameters
We’re given training data:

Want to find parameters that maximize likelihood on training data:

p(training data; ~✓) =
NY

n=1

p(yn|xn; ~✓)

Equivalent to maximizing the log-likelihood:
NX

n=1

log(p(yn|xn; ~✓))

(x1, y1), (x2, y2), . . . , (xN , yN)

~✓ = [✓1, ✓2, . . . , ✓K]

p(yn | xn; ~✓) =
1

Z(x)
exp(

KX

k=1

✓kf(xn, yn))

Side-note: Probability vs. Likelihood

• Parameter known. Data unknown.

• I know a coin is biased with this parameter: P(Flip=H)=0.7, P(Flip=T)=0.3

• Question: If I flip 3 times, what is the probability I’ll get HHH? 0.7x0.7x0.7=0.34

• Data known. Parameter unknown.

• I know that I flipped 3 times and got HHH.

• Question: What’s my estimate of the biasness of the coin? i.e. P(Flip=H)=???

• Maximum likelihood solution is P(Flip=H)=1.0, P(Flip=T)=0.0.

• Try P(Flip=H)=1. Likelihood = 1.0 x 1.0 x 1.0 = 1.0

• Try P(Flip=H)=0.7. Likelihood = 0.7x0.7x0.7=0.34

Regularization Term

• Large weights may lead to p(y|x) which may vary largely
due to small changes in input

• Encourage weights to be small by adding a penalty

• L2 regularization:

||~✓||2 =

✓q
✓21 + ✓22 + . . .+ ✓2K

◆2

=
KX

k=1

✓2k

Loss Function
(or Objective Function)

• Goal: Find parameters that minimize this Loss Function,
Negative Log-Likelihood + Regularizer

• We can use various optimization techniques. Think back
to your Calculus class.

L(~✓) = �
NX

n=1

log(p(yn|xn; ~✓)) + ||~✓||2

Training by Gradient Descent

• The gradient of a function points to the direction of
steepest increase in that function

rL(~✓) =

"
@L(~✓)

@✓1
;
@L(~✓)

@✓2
; · · · ; @L(

~✓)

@✓K

#

• Gradient Descent Algorithm: start with some random
parameter, keep going in the opposite gradient direction

• Like how you ski down a mountain

Training by Gradient Descent

• Exercise: Compute partial derivatives of loss function

L(~✓) = �
NX

n=1

log(p(yn|xn; ~✓)) + ||~✓||2

• Regularizer part:

@||~✓||2

@✓1
=

@
⇣p

✓21 + ✓22 + . . .+ ✓2K
2
⌘

@✓1
=

@
�
✓21 + ✓22 + . . .+ ✓2K

�

@✓1
=

@
�
✓21
�

@✓1
= 2✓1

• Likelihood part:

@
⇣
�
PN

n=1 log p(yn | xn; ~✓)
⌘

@✓1
=

NX

n=1

@
⇣
� log p(yn | xn; ~✓)

⌘

@✓1

Gradient Descent and
Stochastic Gradient Descent (SGD)

• Gradient Descent Algorithm:

• Start with some parameter

• While not converged:

• Update parameter

• SGD:

NX

n=1

@
⇣
� log p(yn | xn; ~✓)

⌘

@✓1
⇡

X

n:subset

@
⇣
� log p(yn | xn; ~✓)

⌘

@✓1

~✓

~✓ := ~✓ � ⌘rL(~✓)

Summary
• Log-Linear Model has this form:

p(training data; ~✓) =
NY

n=1

p(yn|xn; ~✓)

p(yn | xn; ~✓) =
1

Z(x)
exp(

KX

k=1

✓kf(xn, yn))

• Features enable us to incorporate knowledge of the problem

• Given training data, we fit parameters to maximize likelihood
(optionally with a regularization term)

Interactive Visualization
• http://www.cs.jhu.edu/~jason/465/hw-prob/loglin/#1

http://www.cs.jhu.edu/~jason/465/hw-prob/loglin/#1

