Machine Learning Basics

Kevin Duh

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Today's Topics

1 Machine Learning basics

- Why Machine Learning is needed?
- Main Concepts: Generalization, Model Expressiveness, Overfitting
- Formal Notation
- Experiment Design

Write a Program* to Recognize the Digit 2

This is hard to do manually!

bool recognizeDigitAs2(int** imagePixels){...}

^{*}example from Hinton's Coursera course

Write a Program* to Recognize the Digit 2

This is hard to do manually!

bool recognizeDigitAs2(int** imagePixels){...}

Machine Learning solution:

- Assume you have a database (training data) of 2's and non-2's.
- Q Automatically "learn" this function from data

*example from Hinton's Coursera course

A Machine Learning Solution

Training data are represented as pixel matrices:

Classifier is parameterized by weight matrix of same dimension.

A Machine Learning Solution

Training data are represented as pixel matrices:

Classifier is parameterized by weight matrix of same dimension.

Training procedure:

- When observe "2", add 1 to corresponding matrix elements
- O When observe "non-2", subtract 1 to corresponding matrix elements

0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0		0	1	1	1	1	1	0	0	1
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	1	0	0	0		0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	1	0	0	0		0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	1	0	0	0	0		0	0	0	0	0	1	-1	0	
0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	0	0	0	0	0	-	0	0	0	0	1	0	-1	0	
0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0		0	0	0	1	0	0	-1	0	
0	0	0	0	0	0	0	0	0	0		0	0	1	0	0	0	0	0	0	0		0	0	1	0	0	0	-1	0	
0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	0		0	1	1	1	1	1	-1	1	
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
																				_					_					_

A Machine Learning Solution

Training data are represented as pixel matrices:

Classifier is parameterized by weight matrix of same dimension.

Training procedure:

- When observe "2", add 1 to corresponding matrix elements
- ⁽²⁾ When observe "non-2", subtract 1 to corresponding matrix elements

Test procedure: given new image, take sum of element-wise product. If positive, predict "2"; else predict "non-2".

Today's Topics

1 Machine Learning basics

- Why Machine Learning is needed?
- Main Concepts: Generalization, Model Expressiveness, Overfitting
- Formal Notation
- Experiment Design

$Generalization \neq Memorization$

Key Issue in Machine Learning: Training data is limited

- If the classifier just memorizes the training data, it may perform poorly on new data
- "Generalization" is ability to extend accurate predictions to new data

$Generalization \neq Memorization$

Key Issue in Machine Learning: Training data is limited

- If the classifier just memorizes the training data, it may perform poorly on new data
- "Generalization" is ability to extend accurate predictions to new data

Will this classifier generalize?

0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	-1	0	0	0
0	0	0	0	1	0	-1	0	0	0
0	0	0	1	0	0	-1	0	0	0
0	0	1	0	0	0	-1	0	0	0
0	1	1	1	1	1	-1	1	1	0
0	0	0	0	0	0	0	0	0	0

$Generalization \neq Memorization$

One potential way to increase generalization ability:

- Discretize weight matrix with larger grids (fewer weights to train)
- E.g. consider shifted image:

Now will this classifier generalize?

0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		1	1	1	0	
0	1	1	1	1	1	0	0	0	0	1	0	1	1	1	1	1	0	0	0	0	ļ	-	-	-	<u> </u>	<u> </u>
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		0	<u> </u>	•	•	•
0	0	0	0	0	1	-1	0	0	0		0	0	0	0	0	1	-1	0	0	0		0	0	1	-1	0
0	0	0	0	1	0	-1	0	0	0		0	0	0	0	1	0	-1	0	0	0	7	•	<u> </u>	-	-	•
0	0	0	1	0	0	-1	0	0	0]	0	0	0	1	0	0	-1	0	0	0		0	1	0	-1	0
0	0	1	0	0	0	-1	0	0	0		0	0	1	0	0	0	-1	0	0	0			-		-	Ŭ
0	1	1	1	1	1	-1	1	1	0		0	1	1	1	1	1	-1	1	1	0	j l	1	1	1	0	1
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	j l	-	-	-	•	-

- A model with more weight parameters may fit training data better
- But since training data is limited, expressive model stand the risk of overfitting to peculiarities of the data.

Underfit training data \iff Overfit training data

Model Expressiveness and Overfitting

Fitting the training data (blue points: x_n) with a polynomial model: $f(x) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$ under squared error objective $\frac{1}{2} \sum_n (f(x_n) - t_n)^2$

9/16

from PRML Chapter 1 [?]

Today's Topics

1 Machine Learning basics

- Why Machine Learning is needed?
- Main Concepts: Generalization, Model Expressiveness, Overfitting

<ロ> (四) (四) (三) (三) (三)

10/16

- Formal Notation
- Experiment Design

Basic Problem Setup in Machine Learning

- Training Data: a set of $(x^{(m)}, y^{(m)})_{m=\{1,2,..M\}}$ pairs, where input $x^{(m)} \in \mathbb{R}^d$ and output $y^{(m)} = \{0, 1\}$
 - e.g. x=vectorized image pixels, y=2 or non-2
- Goal: Learn function $f : x \to y$ to predicts correctly on new inputs x.

Basic Problem Setup in Machine Learning

- Training Data: a set of $(x^{(m)}, y^{(m)})_{m=\{1,2,..M\}}$ pairs, where input $x^{(m)} \in \mathbb{R}^d$ and output $y^{(m)} = \{0, 1\}$
 - ▶ e.g. x=vectorized image pixels, y=2 or non-2
- Goal: Learn function $f : x \to y$ to predicts correctly on new inputs x.
 - Step 1: Choose a function model family:
 - * e.g. logistic regression, support vector machines, neural networks

Basic Problem Setup in Machine Learning

- Training Data: a set of $(x^{(m)}, y^{(m)})_{m=\{1,2,..M\}}$ pairs, where input $x^{(m)} \in \mathbb{R}^d$ and output $y^{(m)} = \{0, 1\}$
 - ▶ e.g. x=vectorized image pixels, y=2 or non-2
- Goal: Learn function $f : x \to y$ to predicts correctly on new inputs x.
 - Step 1: Choose a function model family:
 - * e.g. logistic regression, support vector machines, neural networks

◆ロト ◆課 と ◆語 と ◆語 と ○語 ●の

11/16

- Step 2: Optimize parameters w on the Training Data
 - * e.g. minimize loss function min_w $\sum_{m=1}^{M} (f_w(x^{(m)}) y^{(m)})^2$

Today's Topics

1 Machine Learning basics

- Why Machine Learning is needed?
- Main Concepts: Generalization, Model Expressiveness, Overfitting

<ロ> (四) (四) (三) (三) (三)

12/16

- Formal Notation
- Experiment Design

- Training Data: used to learn function f()
- Development / Validation Data: used to evaluate how good f() is, to make high-level model selection decisions, e.g.
 - Which machine learning model to deploy?
 - Tradeoff hyperparameter between regularizer and likelihood?
- Test Data: used to *really* evaluate how good f() is

- Training Data: used to learn function f()
- Development / Validation Data: used to evaluate how good f() is, to make high-level model selection decisions, e.g.

13/16

- Which machine learning model to deploy?
- Tradeoff hyperparameter between regularizer and likelihood?
- Test Data: used to *really* evaluate how good f() is
- IMPORTANT:
 - Don't train on test data

- Training Data: used to learn function f()
- Development / Validation Data: used to evaluate how good f() is, to make high-level model selection decisions, e.g.

13/16

- Which machine learning model to deploy?
- Tradeoff hyperparameter between regularizer and likelihood?
- Test Data: used to *really* evaluate how good f() is
- IMPORTANT:
 - Don't train on test data
 - Don't do model selection on test data

- Training Data: used to learn function f()
- Development / Validation Data: used to evaluate how good f() is, to make high-level model selection decisions, e.g.
 - Which machine learning model to deploy?
 - Tradeoff hyperparameter between regularizer and likelihood?
- Test Data: used to *really* evaluate how good f() is
- IMPORTANT:
 - Don't train on test data
 - Don't do model selection on test data
 - Be careful in your experiment design, so that you aren't fooled by over-optimism when deploying a model in real life!

- When deploying a model f(), we're really interested in the expected error/loss on unseen data
- But we only have estimates based on dev loss

Bias-Variance Tradeoff

- When deploying a model *f*(), we're really interested in the expected error/loss on unseen data
- But we only have estimates based on dev loss
- This estimated loss can be viewed as bias + variance
 - ▶ bias: errors from simplifying assumptions in the model *f*().
 - variance: A different sample of the training set may have resulted in a very different f().
 - Imagine throwing many darts: bias = closeness to bullseye, variance = dispersion of darts

Bias-Variance Tradeoff

- When deploying a model *f*(), we're really interested in the expected error/loss on unseen data
- But we only have estimates based on dev loss
- This estimated loss can be viewed as bias + variance
 - ▶ bias: errors from simplifying assumptions in the model *f*().
 - variance: A different sample of the training set may have resulted in a very different f().
 - Imagine throwing many darts: bias = closeness to bullseye, variance = dispersion of darts
- Generally, complex functions fit the data better, so have low bias but more susceptible to high variance

• Suppose we can't afford to hold out a dev set out of our training set.

- Suppose we can't afford to hold out a dev set out of our training set.
- Divide data into K parts, e.g. K=5
 - Fold 1, 2, 3, 4 as training, Fold 5 as dev
 - Fold 2, 3, 4, 5 as training, Fold 1 as dev
 - Fold 3, 4, 5, 1 as training, Fold 2 as dev
 - Fold 4, 5, 1, 2 as training, Fold 3 as dev
 - Fold 5, 1, 2, 3 as training, Fold 4 as dev

• Suppose we can't afford to hold out a dev set out of our training set.

- Divide data into K parts, e.g. K=5
 - Fold 1, 2, 3, 4 as training, Fold 5 as dev
 - Fold 2, 3, 4, 5 as training, Fold 1 as dev
 - Fold 3, 4, 5, 1 as training, Fold 2 as dev
 - Fold 4, 5, 1, 2 as training, Fold 3 as dev
 - Fold 5, 1, 2, 3 as training, Fold 4 as dev

• Run the same algorithm on all K cases, compute average dev loss.

• Suppose we can't afford to hold out a dev set out of our training set.

- Divide data into K parts, e.g. K=5
 - Fold 1, 2, 3, 4 as training, Fold 5 as dev
 - Fold 2, 3, 4, 5 as training, Fold 1 as dev
 - Fold 3, 4, 5, 1 as training, Fold 2 as dev
 - Fold 4, 5, 1, 2 as training, Fold 3 as dev
 - Fold 5, 1, 2, 3 as training, Fold 4 as dev
- Run the same algorithm on all K cases, compute average dev loss.

15/16

• Select model based on avg. dev loss, then evaluate on test.

- Suppose we can't afford to hold out a dev set out of our training set.
- Divide data into K parts, e.g. K=5
 - Fold 1, 2, 3, 4 as training, Fold 5 as dev
 - Fold 2, 3, 4, 5 as training, Fold 1 as dev
 - Fold 3, 4, 5, 1 as training, Fold 2 as dev
 - Fold 4, 5, 1, 2 as training, Fold 3 as dev
 - Fold 5, 1, 2, 3 as training, Fold 4 as dev
- Run the same algorithm on all K cases, compute average dev loss.
- Select model based on avg. dev loss, then evaluate on test.
- How to pick K? Consider computation and Bias-Variance tradeoff

- No machine learning method is best for all datasets
- You must learn to choose an appropriate model family and optimization algorithm for your task
- Don't trust anyone who advertises a machine learning method that always wins.