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Today's Topics

© Machine Learning basics
@ Why Machine Learning is needed?
@ Main Concepts: Generalization, Model Expressiveness, Overfitting
@ Formal Notation
@ Experiment Design
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Write a Program™® to Recognize the Digit 2

This is hard to do manually!
bool recognizeDigitAs2(int** imagePixels){...}
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*example from Hinton's Coursera course
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Write a Program™® to Recognize the Digit 2
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bool recognizeDigitAs2(int** imagePixels){...}
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Machine Learning solution:

© Assume you have a database (training data) of 2's and non-2's.

@ Automatically "learn” this function from data

*example from Hinton's Coursera course
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A Machine Learning Solution

Training data are represented as pixel matrices:
Classifier is parameterized by weight matrix of same dimension.
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Training data are represented as pixel matrices:

Classifier is parameterized by weight matrix of same dimension.

Training procedure:

@ When observe "2", add 1 to corresponding matrix elements

@ When observe "non-2", subtract 1 to corresponding matrix elements
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A Machine Learning Solution

Training data are represented as pixel matrices:

Classifier is parameterized by weight matrix of same dimension.

Training procedure:

@ When observe
@ When observe '

"2", add 1 to corresponding matrix elements
"non-2", subtract 1 to corresponding matrix elements
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Test procedure

: given new image, take

sum of element-wise product.

If positive, predict "2"; else predict "non-2".
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Today's Topics

© Machine Learning basics
@ Why Machine Learning is needed?
@ Main Concepts: Generalization, Model Expressiveness, Overfitting
@ Formal Notation
@ Experiment Design
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Generalization £ Memorization

Key Issue in Machine Learning: Training data is limited

o If the classifier just memorizes the training data, it may perform
poorly on new data

@ "Generalization” is ability to extend accurate predictions to new data
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Generalization £ Memorization

Key Issue in Machine Learning: Training data is limited

o If the classifier just memorizes the training data, it may perform
poorly on new data

@ "Generalization” is ability to extend accurate predictions to new data

E.g. consider shifted image: Will this classifier generalize?
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One potential way to increase generalization ability:

Generalization £ Memorization

e Discretize weight matrix with larger grids (fewer weights to train)
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Now will this classifier generalize?

E.g. consider shifted image:
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Model Expressiveness and Overfitting

@ A model with more weight parameters may fit training data better

@ But since training data is limited, expressive model stand the risk of
overfitting to peculiarities of the data.

Less Expressive Model <= More Expressive Model
(fewer weights) (more weights)

Underfit training data <= Overfit training data
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Model Expressiveness and Overfitting

Fitting the training data (blue points: x,)

with a polynomial model: f(x) = wp + wix + wax? + ... 4+ wyxM
under squared error objective 1 3= (f(x) — ta)?

from PRML Chapter 1 [?] 9/16
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Basic Problem Setup in Machine Learning

@ Training Data: a set of (x(’"),y(’"))m:{Lz,”M} pairs, where input
x(m € RY and output y(™ = {0,1}
> e.g. x=vectorized image pixels, y=2 or non-2
@ Goal: Learn function f : x — y to predicts correctly on new inputs x.
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Basic Problem Setup in Machine Learning

@ Training Data: a set of (x(’"),y(’"))m:{m,_M} pairs, where input
x(m € RY and output y(™ = {0,1}
> e.g. x=vectorized image pixels, y=2 or non-2
@ Goal: Learn function f : x — y to predicts correctly on new inputs x.
» Step 1: Choose a function model family:
* e.g. logistic regression, support vector machines, neural networks
» Step 2: Optimize parameters w on the Training Data
* e.g. minimize loss function min,, Z,A:,’:l(fw(x(’")) — y(m)?
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Experiment Design

@ Training Data: used to learn function f()

@ Development / Validation Data: used to evaluate how good f() is, to
make high-level model selection decisions, e.g.

» Which machine learning model to deploy?
» Tradeoff hyperparameter between regularizer and likelihood?

o Test Data: used to really evaluate how good f() is
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Experiment Design

Training Data: used to learn function ()

Development / Validation Data: used to evaluate how good f() is, to
make high-level model selection decisions, e.g.

» Which machine learning model to deploy?
» Tradeoff hyperparameter between regularizer and likelihood?

Test Data: used to really evaluate how good () is

o IMPORTANT:

» Don't train on test data

» Don’t do model selection on test data

» Be careful in your experiment design, so that you aren’t fooled by
over-optimism when deploying a model in real life!
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Bias-Variance Tradeoff

@ When deploying a model (), we're really interested in the expected
error/loss on unseen data

@ But we only have estimates based on dev loss
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@ When deploying a model (), we're really interested in the expected
error/loss on unseen data

@ But we only have estimates based on dev loss

@ This estimated loss can be viewed as bias + variance

» bias: errors from simplifying assumptions in the model ().
» variance: A different sample of the training set may have resulted in a

very different ().
» Imagine throwing many darts: bias = closeness to bullseye, variance =

dispersion of darts
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Bias-Variance Tradeoff

@ When deploying a model (), we're really interested in the expected
error/loss on unseen data

@ But we only have estimates based on dev loss

@ This estimated loss can be viewed as bias + variance

» bias: errors from simplifying assumptions in the model ().

» variance: A different sample of the training set may have resulted in a
very different ().

» Imagine throwing many darts: bias = closeness to bullseye, variance =
dispersion of darts

@ Generally, complex functions fit the data better, so have low bias but
more susceptible to high variance
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K-Fold Cross-Validation

@ Suppose we can't afford to hold out a dev set out of our training set.
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K-Fold Cross-Validation

@ Suppose we can't afford to hold out a dev set out of our training set.
@ Divide data into K parts, e.g. K=b

Fold 1, 2, 3, 4 as training, Fold 5 as dev
Fold 2, 3, 4, 5 as training, Fold 1 as dev
Fold 3, 4, 5, 1 as training, Fold 2 as dev
Fold 4, 5, 1, 2 as training, Fold 3 as dev
Fold 5, 1, 2, 3 as training, Fold 4 as dev
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@ Run the same algorithm on all K cases, compute average dev loss.
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@ Suppose we can't afford to hold out a dev set out of our training set.
@ Divide data into K parts, e.g. K=b

Fold 1, 2, 3, 4 as training, Fold 5 as dev
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@ Run the same algorithm on all K cases, compute average dev loss.

@ Select model based on avg. dev loss, then evaluate on test.
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K-Fold Cross-Validation

Suppose we can't afford to hold out a dev set out of our training set.
Divide data into K parts, e.g. K=5

» Fold 1, 2, 3, 4 as training, Fold 5 as dev
» Fold 2, 3, 4, 5 as training, Fold 1 as dev
» Fold 3, 4, 5, 1 as training, Fold 2 as dev
» Fold 4, 5, 1, 2 as training, Fold 3 as dev
» Fold 5, 1, 2, 3 as training, Fold 4 as dev

Run the same algorithm on all K cases, compute average dev loss.

Select model based on avg. dev loss, then evaluate on test.

How to pick K7 Consider computation and Bias-Variance tradeoff
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No Free Lunch Theorem

@ No machine learning method is best for all datasets

@ You must learn to choose an appropriate model family and
optimization algorithm for your task

@ Don't trust anyone who advertises a machine learning method that
always wins.
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