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Today’s Topics

1 Machine Learning basics
Why Machine Learning is needed?
Main Concepts: Generalization, Model Expressiveness, Overfitting
Formal Notation
Experiment Design
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Write a Program∗ to Recognize the Digit 2

This is hard to do manually!
bool recognizeDigitAs2(int** imagePixels){...}

Machine Learning solution:

1 Assume you have a database (training data) of 2’s and non-2’s.

2 Automatically ”learn” this function from data

*example from Hinton’s Coursera course
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A Machine Learning Solution

Training data are represented as pixel matrices:
Classifier is parameterized by weight matrix of same dimension.

Training procedure:
1 When observe ”2”, add 1 to corresponding matrix elements
2 When observe ”non-2”, subtract 1 to corresponding matrix elements
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Test procedure: given new image, take sum of element-wise product.
If positive, predict ”2”; else predict ”non-2”.
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Today’s Topics

1 Machine Learning basics
Why Machine Learning is needed?
Main Concepts: Generalization, Model Expressiveness, Overfitting
Formal Notation
Experiment Design
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Generalization 6= Memorization

Key Issue in Machine Learning: Training data is limited

If the classifier just memorizes the training data, it may perform
poorly on new data

”Generalization” is ability to extend accurate predictions to new data

E.g. consider shifted image: Will this classifier generalize?
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Generalization 6= Memorization

One potential way to increase generalization ability:

Discretize weight matrix with larger grids (fewer weights to train)

E.g. consider shifted image:

Now will this classifier generalize?
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Model Expressiveness and Overfitting

A model with more weight parameters may fit training data better

But since training data is limited, expressive model stand the risk of
overfitting to peculiarities of the data.

Less Expressive Model ⇐⇒ More Expressive Model
(fewer weights) (more weights)

Underfit training data ⇐⇒ Overfit training data
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Model Expressiveness and Overfitting

Fitting the training data (blue points: xn)
with a polynomial model: f (x) = w0 + w1x + w2x

2 + . . . + wMxM

under squared error objective 1
2

∑
n(f (xn)− tn)2

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

from PRML Chapter 1 [?] 9/16



Today’s Topics

1 Machine Learning basics
Why Machine Learning is needed?
Main Concepts: Generalization, Model Expressiveness, Overfitting
Formal Notation
Experiment Design

10/16



Basic Problem Setup in Machine Learning

Training Data: a set of (x (m), y (m))m={1,2,..M} pairs, where input

x (m) ∈ Rd and output y (m) = {0, 1}
I e.g. x=vectorized image pixels, y=2 or non-2

Goal: Learn function f : x → y to predicts correctly on new inputs x .

I Step 1: Choose a function model family:
F e.g. logistic regression, support vector machines, neural networks

I Step 2: Optimize parameters w on the Training Data
F e.g. minimize loss function minw

∑M
m=1(fw (x

(m))− y (m))2

11/16



Basic Problem Setup in Machine Learning

Training Data: a set of (x (m), y (m))m={1,2,..M} pairs, where input

x (m) ∈ Rd and output y (m) = {0, 1}
I e.g. x=vectorized image pixels, y=2 or non-2

Goal: Learn function f : x → y to predicts correctly on new inputs x .
I Step 1: Choose a function model family:

F e.g. logistic regression, support vector machines, neural networks

I Step 2: Optimize parameters w on the Training Data
F e.g. minimize loss function minw

∑M
m=1(fw (x

(m))− y (m))2

11/16



Basic Problem Setup in Machine Learning

Training Data: a set of (x (m), y (m))m={1,2,..M} pairs, where input

x (m) ∈ Rd and output y (m) = {0, 1}
I e.g. x=vectorized image pixels, y=2 or non-2

Goal: Learn function f : x → y to predicts correctly on new inputs x .
I Step 1: Choose a function model family:

F e.g. logistic regression, support vector machines, neural networks

I Step 2: Optimize parameters w on the Training Data
F e.g. minimize loss function minw

∑M
m=1(fw (x

(m))− y (m))2

11/16



Today’s Topics

1 Machine Learning basics
Why Machine Learning is needed?
Main Concepts: Generalization, Model Expressiveness, Overfitting
Formal Notation
Experiment Design

12/16



Experiment Design

Training Data: used to learn function f ()

Development / Validation Data: used to evaluate how good f () is, to
make high-level model selection decisions, e.g.

I Which machine learning model to deploy?
I Tradeoff hyperparameter between regularizer and likelihood?

Test Data: used to really evaluate how good f () is

IMPORTANT:
I Don’t train on test data
I Don’t do model selection on test data
I Be careful in your experiment design, so that you aren’t fooled by

over-optimism when deploying a model in real life!
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Bias-Variance Tradeoff

When deploying a model f (), we’re really interested in the expected
error/loss on unseen data

But we only have estimates based on dev loss

This estimated loss can be viewed as bias + variance
I bias: errors from simplifying assumptions in the model f ().
I variance: A different sample of the training set may have resulted in a

very different f ().
I Imagine throwing many darts: bias = closeness to bullseye, variance =

dispersion of darts

Generally, complex functions fit the data better, so have low bias but
more susceptible to high variance
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K-Fold Cross-Validation

Suppose we can’t afford to hold out a dev set out of our training set.

Divide data into K parts, e.g. K=5
I Fold 1, 2, 3, 4 as training, Fold 5 as dev
I Fold 2, 3, 4, 5 as training, Fold 1 as dev
I Fold 3, 4, 5, 1 as training, Fold 2 as dev
I Fold 4, 5, 1, 2 as training, Fold 3 as dev
I Fold 5, 1, 2, 3 as training, Fold 4 as dev

Run the same algorithm on all K cases, compute average dev loss.

Select model based on avg. dev loss, then evaluate on test.

How to pick K? Consider computation and Bias-Variance tradeoff
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No Free Lunch Theorem

No machine learning method is best for all datasets

You must learn to choose an appropriate model family and
optimization algorithm for your task

Don’t trust anyone who advertises a machine learning method that
always wins.
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