Semantics

Kevin Duh Intro to NLP, Fall 2019

Outline

- Challenges
- Distributional Semantics
- Word Sense
- Semantic Role Labeling

The Challenge of Designing Semantic Representations

- Q: What is semantics?
- A: The study of meaning

- Q: What is meaning?
- A: ...

We know it when we see it

- These sentences/phrases all have the same meaning:
 - XYZ corporation bought the stock.
 - The stock was bought by XYZ corporation.
 - The purchase of the stock by XYZ corporation...
 - The stock purchase by XYZ corporation...

But how to formally define it?

PEARSON

Speech and Language Processing, Second Edition Daniel Jurafsky and James H. Martin

Example Representations

Sentence: "I have a car"

"Ich habe ein Auto"

As translation in another language

There's no single agreed-upon representation that works in all cases

- Different emphases:
 - Words or Sentences
 - Syntax-Semantics interface, Logical Inference, etc.
- Different aims:
 - "Deep (and narrow)" vs "Shallow (and broad)"
 - e.g. Show me all <u>flights</u> from BWI to NRT.
 - Do we link to actual flight records?
 - Or general concept of flying machines?

Outline

- Challenges
- Distributional Semantics
- Word Sense
- Semantic Role Labeling

Distributional Semantics

What information is needed for a good representation?

You shall know a word by the company it keeps. – J. R. Firth (linguist)

 Distributional Semantics: a word's meaning is based on its positional distribution in text

Learning Distributional Semantics from large text dataset

- Your pet dog is so cute
- Your pet cat is so cute
- The dog ate my homework
- The cat ate my homework

neighbor(dog) overlaps-with neighbor(cats)

so meaning(dog) is-similar-to meaning(cats)

Word2Vec implements Distribution Semantics

From: Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word Representations in Vector Space"

Latent Semantic Analysis (LSA) also implements Distributional Semantics

Document-Term Matrix

	pet	dog	is	cat	the	ate
S1	1	1	1	0	0	0
S2	1	0	1	1	0	0
S3	0	1	0	0	1	1
S4	0	0	0	1	1	1

S1: ... pet dog is ... S2: ... pet cat is ...

- S3: The dog ate ...
- S4: The cat ate ...

Advantages of Distributional Semantics

- Do you know what's a bar-ba-loot?
- What is a more likely sentence?
 - 1. Bar-ba-loots like to eat fruits
 - 2. The pirate ship **Bar-ba-loots** looted Barbados
- What if I tell you: vector(Bar-ba-loots) ~ vector(bear)

Advantages of Distributional Semantics

 Similarity metric between vectors allow processing of related words

Bar-ba-loots from Dr. Seuss' children books

Outline

- Challenges
- Distributional Semantics
- Word Sense
- Semantic Role Labeling

Word Sense

- Senses of the word **bank**:
 - The bank¹ is investing in CDO's.
 - The river bank² is flooding.
 - The food bank³ is providing free meals.
 - The bank⁴ is at the corner of 1st and Main St.
- bank¹ & bank² are <u>homonyms</u> (coincidentally same sound/orthography, otherwise unrelated in meaning)
- bank¹ & bank³ exhibit polysemy (related meaning: "a repository for stuff")
- bank⁴ shows there's a relationship between BUILDING and INSTITUTION

WordNet

<u>Hypernym</u>:

dog is-a-kind-of canine

to butt is-a-kind-of to hit

<u>Meronym</u>:

window is-part-of building

Entailment:

to sleep is entailed by to snore

Note: Relation is defined in terms of synsets, not words (as this simplified slide might suggest)

George Miller, WordNet founder

Synset

- When senses of two different words are similar, we say they're synonyms
 - e.g. couch & sofa; bank & repository
- Instead of talking about two words being synonyms, we talk of synset as set of senses that are similar
 - e.g. couch¹ & sofa¹; bank¹ & repository²

From Jurafsky & Martin, Speech & Language Processing, 3rd ed. <u>https://web.stanford.edu/~jurafsky/</u> <u>slp3/19.pdf</u>; Derived from: Navigli (2016). Chapter 20. Ontologies. In Mitkov, R. (Ed.), The Oxford handbook of computational linguistics. Oxford University Press.

Noun

 S: (n) serve#1, service#12 ((sports) a stroke that puts the ball in play) "his powerful serves won the game"

Verb

- (55)<u>S:</u> (v) serve#1, <u>function#2</u> (serve a purpose, role, or function) "The tree stump serves as a table"; "The female students served as a control group"; "This table would serve very well"; "His freedom served him well"; "The table functions as a desk"
- (36)<u>5:</u> (v) serve#2 (do duty or hold offices; serve in a specific function) "He served as head of the department for three years"; "She served in Congress for two terms"
- (24)<u>S:</u> (v) serve#3 (contribute or conduce to) "The scandal served to increase his popularity"
- (23)<u>S:</u> (v) <u>service#1</u>, serve#4 (be used by; as of a utility) "The sewage plant served the neighboring communities"; "The garage served to shelter his horses"
- (21)S: (v) serve#5, help#5 (help to some food; help with food or drink) "/

Word Sense Disambiguation (WSD)

- Input Sentence: He <u>served</u> as Secretary of State
- Task: What sense is served?
 - serve¹, serve², serve³, serve⁴?

Supervised methods for WSD

Training Data: Sentences with Sense Labels Extract features from neighboring words & from WordNet descriptions, then train

Classifier

Try to capture selectional preferences:

Example:

- 1. I hate washing dishes
- 2. I can stir-fry some simple dishes

There is little ambiguity in dishes¹ (a physical plate) vs dishes² (a particular food item, like Chicken Fried Rice) for us because: - washing and stir-fry "select" for different kinds of objects

Semi-Supervised methods for WSD: Yarowsky Algorithm

Outline

- Challenges
- Distributional Semantics
- Word Sense
- Semantic Role Labeling

Who did what to whom

- Jerry hit Tom with a hammer today
- Today, Tom was hit by Jerry with a hammer
- With a hammer, Tom hit Jerry today
 Instrument of Agent of Patient of hitting
 Instrument of hitting

Thematic Roles

- Agent: volitional causer for an event. "The waiter spilled the soup"
- Experiencer: the experiencer of an event. "John has a headache"
- <u>Theme</u>: the participant most directly effected by the event. "Fred threw the rock"
- <u>Result</u>: the end product of an event. "The government has built a stadium."
- Force: the non-volitioner cause of an event. "The wind blew things away"
- Instrument: an instrument used in an event

Alternatives to thematic roles

- It's difficult to create a standard set of roles
- Solutions:
 - Fewer roles: each role is more general —> PropBank
 - More roles: define roles specific to each group of predicate —> FrameNet

PropBank roles

- Each verb sense has numbered argument:
 - Arg0: Proto-Agent
 - Arg1: Proto-Patient
 - Arg2-Arg5: depends on the verb sense, includes benefactive, instrument, attribute, end state, ...
 - ArgM-: modifiers or adjuncts
- These are annotated on top of a syntactic parse

PropBank Example

- increase.01 "go up incrementally"
 - Arg0: Proto-Agent causer of increase
 - Arg1: Proto-Patient thing increased
 - Arg2: Amount increased
 - Arg3: Start point; Arg4: End point
- Now we can see these sentences have similar meanings
 - [Arg0 The shop] increased [Arg1 the price] [Arg3 today]
 - [Arg1 The price] increased [Arg2 10%] [Arg0 by the shop]

FrameNet

- These different forms of "increase" are related:
 - [Arg1 The price] increased [Arg2 10%]
 - [Arg1 The price] <u>rose</u>
 - There has been a [Arg2 10%] rise [Arg1 in the price]
- Let's define a frame: change_position_on_a_scale, with elements like item's attribue, initial/final value, difference
 - Verbs evoking this frame: rise, increase, jump, grow,...
 - Nouns evoking this frame: rise, increase, growth, escalation,...
 - [Item The price] <u>increased</u> [Difference 10%]
 - There has been a [Difference 10%] rise [Item in the price]

Semantic Role Labeling Task Formulation (there are variants)

 Determine the semantic role of constituents of a sentence, given the predicate

Semantic Role Labeling Task Formulation (there are variants)

 Determine the semantic role of constituents of a sentence, given the predicate

Semantic Role Labeling Task Formulation (there are variants)

 Determine the semantic role of constituents of a sentence, given the predicate

Models for SRL (1)

- Log-linear classifier for each task
- Features include:
 - headword/POS of constituent
 - voice (active or passive)
 - grammar rule (subcategorization) for predicate VP->VBD NP PP
 - named entity type (The San Fransisco Examiner = ORGANIZATION)
 - path in tree from constituent to predicate: NP1S↓VP↓VBD
- Apply classifier to each node on tree

Models for SRL (2)

• Formulate as sequence labeling (BIO encoding)

He et. al. (2017) Deep SRL. What works and what's next https://kentonl.com/pub/hllz-acl.2017.pdf

Summary

- Challenges: Many ways to define "semantics"
- Distributional Semantics: "You shall know a word by the company it keeps." e.g. Word2Vec
- Word Sense: Synsets & WordNet relations
- Semantic Role Labeling:
 - Who did what to whom.
 - Thematic roles, PropBank, FrameNet