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Outline

• What is Structured Prediction; Why is it relevant to NLP?


• Generative vs. Discriminative; Local vs. Global


• Models for sequence labeling


• HMM, MEMM


• CRF, Structure Perceptron, Structured SVM

This lecture ties together many of the concepts we’ve seen this semester!



Machine Learning 
Abstractions

• Training data


• Input: x  / Output: y


• Lots of {(xi,yi)} i=1,2,…,N


• Goal: build model F(x) on training data, generalize to test 
data: yprediction = F(xtest) , yprediction vs ytruth


• What is the structure of x? What is the structure of y?


• changes the model from the machine learning perspective
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Machine Learning 
Abstractions

• Standard setup in machine learning:


• x is a vector in RD


• y is a label from {class1, class2, class3, … classK}


• Characteristics of NLP problems:


• x is a word or sentence: discrete input


• y has large output space
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Structured Output Example:  
Variable-Length Sequences
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Image recognition output label space: 
{ cat, dog, door, nose, bug, …. }

Caption text generation output space: 
{ all possible English sentences } 

a cute dog 
a very cute dog 

super cute puppy 
adorable puppy looking at me 

….

• Input: Image 

•



Structured Output Example: 
Trees

• Input: 

• Sentence: The story was accepted by the publisher .


• Output: Depedency tree 

• Still N labels (one head per word), but has constraints 
(must be a valid tree (mabye projective tree) 
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The size of output space
• The size of the output space depends on the problem


• For text generation problems:


• Assume vocabulary size V and max length L


• Space: V + V x V + … V x V x V + … VL


• Sometimes cannot assume max length, use <stop> symbol


• For non-generation problems:


• Space could be polynomial or exponential, but has structure that 
can be exploited

7



What is Structured Prediction

• Definition:


• A ML problem with a large output space that contains 
dependencies (structure) between variables


• Additionally, sometimes the desired loss function does 
not decompose well between these variables


• Very prevelant in NLP!
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Generative vs 
Discriminative Models

• Input x, Output y


• Generative model defines p(x,y)


• If we condition on y, we can generate samples x


• We can still compute p(y|x) = p(x,y)/p(x) and do prediction


• Discriminative model defines p(y|x)


• Directly describes quantity we care about for prediction


• (Note: terminology is not always consistent in the research 
literature. Possible to have p(x,y) but trained discriminatively)



Local vs. Global Models
• Input x, Output y


• Let’s say y is a sequence of N labels (y1, y2, .. yN)


• Local models treat each of the N predictions as separate


• Totally independent: p(y1|x), p(y1|x), p(y3|x) 


• Add dependency (greedy): p(y1|x), p(y2|y1,x), p(y3|y2,y1,x)


• Global models treat N predictions as one joint decision



Example for Sequence Labeling

Generative Discriminative

Local MEMM

Global HMM
CRF


Structured Perceptron

Structured SVM
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Hidden Markov Models 
(HMM)

P (O,Q) = P (O|Q)P (Q) =
TY

t=1

P (ot|qt)⇥
TY

t=1

P (qt|qt�1)

q1 q2 q3

o1 o2 o3

Generative

Global



Generative Model Demerit: 
Difficult to add arbitrary features

P (O,Q) = P (O|Q)P (Q) =
TY

t=1

P (ot|qt)⇥
TY

t=1

P (qt|qt�1)

q1 q2 q3

o1 o2 o3

Suppose I want to incorporate many features 
These all need to be “generated”

r1 r2 r3

P (O,R,Q) = P (O,R|Q)P (Q) =
TY

t=1

P (rt|qt)⇥
TY

t=1

P (ot|qt)⇥
TY

t=1

P (qt|qt�1)

But need to be careful about “feature selection”, otherwise waste 
modeling power on features that don’t matter for classification. e.g. 
imagine rt is random or redundant. (model assumes feature independence)



Maximum Entropy Markov 
Models (MEMM)

q1 q2 q3

o1 o2 o3

Local

Classifier 1 Classifier 2 Classifier 3

Discriminative:  
log-linear models

P (q1|o1) / exp(
X

k

✓k · fk(q1, o1)) P (qt|ot, qt�1) / exp(
X

k

✓k · fk(qt, ot, qt�1))



Local Model Demerit:  
Label Bias

• POS tagging example


• Observation: The robot wheels are round

Due to per-state normalization: if P(V|N,wheels) > P(N|N,wheels), 
MEMM stuck in upper path regardless of observation

Example from Wallach (2002). Efficient Training of Conditional Random Fields. M. Sc. thesis, Univ. of Edinburgh



Label Bias Problem
• The problem: States with low-entropy next-state 

distributions tend to ignore observations


• due to per-state normalization, i.e. transitions leaving a 
state only compete against each other


• Solution: 


• need global model that accounts for whole sequence


• amplify/dampen probability at individual transitions: finite-
state model with un-normalized transition probability



Outline

• What is Structured Prediction; Why is it relevant to NLP?


• Generative vs. Discriminative; Local vs. Global


• Models for sequence labeling


• HMM, MEMM


• CRF, Structure Perceptron, Structured SVM



Intuition: use log-linear model like 
MEMM, but have global normalization

• Define distribution over all possible sequences of Q, 
conditioned on O


• (may be intractable depending on assumptions)

P (Q|O) = P (q1, q2, . . . , qN |o1, o2, . . . , oN )

/ exp(
X

k

✓k · fk(q1, q2, . . . , qN , o1, o2, . . . , oN ))



Linear-Chain Conditional 
Random Field (CRF)

P (Q|O) / exp(
X

i,k

✓k · fk(qi, qi�1, O) +
X

i,j

✓j · fj(qi, O))

q1 q2 q3

o1 o2 o3

Training is similar to what we derived for log-linear models, but need efficient 
inference (Dynamic Programming) to compute partition function over all sequences



General CRF
• Cliques c define variables that should interact

P (Q|O) =
exp(

P
c,k ✓k · fk(c,Q(c)

, O))
P

Q0 exp(
P

c,k ✓k · fk(c,Q0(c), O))

• Distribution over all possible output structures

….

Structure 1
Structure 2
Structure 3
Structure 4

0 0.025 0.05 0.075 0.1



What if we don’t need a 
probabilistic model?

• We only need to output a single “best” Q given O

P (Q|O) =
exp(

P
c,k ✓k · fk(c,Q(c)

, O))
P

Q0 exp(
P

c,k ✓k · fk(c,Q0(c), O))

S(Q|O) =
X

c,k

✓k · fk(c,Q(c)
, O)

Q̂ = argmaxS(Q|O) = argmax
X

c,k

✓k · fk(c,Q(c)
, O)



Structured Perceptron
• Define features over structure:


• Training procedure:


• While not converged:


• Draw training sample


• Decode:


• If incorrect                ; update

X

k

✓k · fk(Q,O)

Q̂ = arg max
Q02G(O)

X

k

✓k · fk(Q0
, O)

(Q,O)

Q 6= Q̂

✓k += fk(Q,O)� fk(Q̂, O)

G(O) denotes all output structure of 
O. Only requirement is a decoder 

that can search over this G(O)

Add positive example, 
subtract negative example



Structure Perceptron: 
Geometric View

Current parameters θ=(3,2) 
characterize a direction 
under this linear model

argmax result 
f=(4,2)

correct  
output 
f=(0,2)

New parameters 
θ=(3,2)+(0,2)-(4,2)=(-1,2)



Structured Perceptron for 
HMM

P (O,Q) =
TY

t=1

P (ot|qt)⇥ P (qt|qt�1)

logP (O,Q) =
TX

t=1

logP (ot|qt) + logP (qt|qt�1)

=
X

s

logP (ot|qt = s)Count(s)

+
X

s,s0

logP (qt = s|qt�1 = s
0)Count(s, s0)

Weights θ Features f



Structured Perceptron vs. CRF

• If we use SGD update for CRF, then the update turns out 
very similar (modulo regularization, learning rate, etc.)


• Structured Perceptron


• CRF

✓k += fk(Q,O)� fk(Q̂, O)

✓k += fk(Q,O)� EQ[fk(Q,O)]

Argmax over all output structures

Expectation over all output structures



Margin
• Our structured perceptron implements:


• Score(correct structure) ≥ Score(any other structure)


• We can make this more robust by adding a margin:


• Score(correct structure) ≥ Score(any other struct) + Positive constant


• Further, we can incorporate domain knowledge:


• Score(correct structure) ≥ Score(very bad structure) + Large constant


• Score(correct structure) ≥ Score(not bad structure) + Small constant



Structured Support Vector Machine 
(Large-Margin Structured Classifier)

• We desire scores such that these constraints are satisfied

✓
T
f(Q,O) � ✓

T
f(Q0

, O) + l(Q,Q
0) 8Q0

✓
T
f(Q,O) � max

Q0
[✓T f(Q0

, O) + l(Q,Q
0)]

• Rather than enumerating all constraints, we only need the 
max: 

✓k += fk(Q,O)� fk(Q
⇤
, O)

• Update similar to structured perceptron, but different 
negative example:

Q
⇤ = argmax

Q0
[✓T f(Q0

, O) + l(Q,Q
0)]

Loss-augmented inference: 
assumes your decoder can 
exploit structure in l(Q,Q’)



Structure SVM: Geometric View

Current parameters θ=(3,2)

argmax result: 
high score but 

low loss 

correct  
output 
f=(0,2)

New parameters 
θ=(3,2)+(0,2)-(1,4)=(2,0)

loss-augmented inference 
argmax result: 

f=(1,4) 

✓
T
f(Q,O) � ✓

T
f(Q0

, O) + l(Q,Q
0) 8Q0

score loss/penalty



Big picture:  
Structured Perceptron/SVM

• Simple learning procedure. All you need is a decoder


• Discriminative (allows arbitrary features) and Global 
(considers all decisions jointly)


• Caveat: Decoder has to search over all large output 
space. Often feature definition affects tractability



Another example: Dependency Parsing 
with Maximum Spanning Trees

• Define the score of a dependency parse as the sum of all 
edge scores

predictedtree = arg max
all trees

X

edge2tree

edgescore(i, j)

= arg max
all trees

X

edge2tree

X

k

✓kfk(i, j)

• Argmax can be computed by maximum spanning tree 
algorithm





Summary

Generative Discriminative

Local

MEMM: Label bias problem


Note: Many Recurrent Neural Net 
models have label bias too

Global HMM: Cannot incorporate 
arbitrary features

CRF: Extension of log-linear model 
to structured output space


Structured Perceptron: Just need 
a decoder. My 1st bet


Structured SVM: Incorporates 
concept of margin

Recurring theme: efficient computation that exploits structure. This 
is where domain knowledge helps!


