Structured Prediction

Kevin Duh Intro to NLP, Fall 2019

Outline

- What is Structured Prediction; Why is it relevant to NLP?
- Generative vs. Discriminative; Local vs. Global
- Models for sequence labeling
 - HMM, MEMM
 - CRF, Structure Perceptron, Structured SVM

This lecture ties together many of the concepts we've seen this semester!

Machine Learning Abstractions

- Training data
 - Input: **x** / Output: **y**
 - Lots of {(x_i,y_i)} i=1,2,...,N
- Goal: build model F(x) on training data, generalize to test data: yprediction = F(xtest), yprediction VS ytruth
- What is the structure of **x**? What is the structure of **y**?
 - changes the model from the machine learning perspective

Machine Learning Abstractions

- Standard setup in machine learning:
 - **x** is a vector in R^D
 - **y** is a label from {class1, class2, class3, ... classK}
- Characteristics of NLP problems:
 - **x** is a word or sentence: discrete input
 - y has large output space

Structured Output Example: Variable-Length Sequences

Input: Image

Caption text generation output space: { all possible English sentences }

> a cute dog a very cute dog super cute puppy adorable puppy looking at me

Image recognition output label space: { cat, dog, door, nose, bug, }

Structured Output Example: Trees

Input:

• Sentence: The story was accepted by the publisher .

Output: Depedency tree

• Still N labels (one head per word), but has constraints (must be a valid tree (mabye projective tree)

The size of output space

- The size of the output space depends on the problem
- For text generation problems:
 - Assume vocabulary size V and max length L
 - Space: V + V x V + ... V x V x V + ... V^L
 - Sometimes cannot assume max length, use <stop> symbol
- For non-generation problems:
 - Space could be polynomial or exponential, but has structure that can be exploited

What is Structured Prediction

- Definition:
 - A ML problem with a large output space that contains dependencies (structure) between variables
 - Additionally, sometimes the desired loss function does not decompose well between these variables
- Very prevelant in NLP!

Outline

- What is Structured Prediction; Why is it relevant to NLP?
- Generative vs. Discriminative; Local vs. Global
- Models for sequence labeling
 - HMM, MEMM
 - CRF, Structure Perceptron, Structured SVM

Generative vs Discriminative Models

- Input **x**, Output **y**
- Generative model defines p(**x**,**y**)
 - If we condition on **y**, we can generate samples **x**
 - We can still compute $p(\mathbf{y}|\mathbf{x}) = p(\mathbf{x},\mathbf{y})/p(\mathbf{x})$ and do prediction
- Discriminative model defines p(y|x)
 - Directly describes quantity we care about for prediction
- (Note: terminology is not always consistent in the research literature. Possible to have p(x,y) but trained discriminatively)

Local vs. Global Models

- Input **x**, Output **y**
 - Let's say **y** is a sequence of N labels $(y_1, y_2, ..., y_N)$
- Local models treat each of the N predictions as separate
 - Totally independent: $p(y_1|\mathbf{x})$, $p(y_1|\mathbf{x})$, $p(y_3|\mathbf{x})$
 - Add dependency (greedy): $p(y_1|\mathbf{x})$, $p(y_2|y_1,\mathbf{x})$, $p(y_3|y_2,y_1,\mathbf{x})$
- Global models treat N predictions as one joint decision

Example for Sequence Labeling

Outline

- What is Structured Prediction; Why is it relevant to NLP?
- Generative vs. Discriminative; Local vs. Global
- Models for sequence labeling
 - HMM, MEMM
 - CRF, Structure Perceptron, Structured SVM

Generative Model Demerit: Difficult to add arbitrary features

Suppose I want to incorporate many features These all need to be "generated" $P(O,Q) = P(O|Q)P(Q) = \prod_{t=1}^{T} P(o_t|q_t) \times \prod_{t=1}^{T} P(q_t|q_{t-1})$ $P(O,R,Q) = P(O,R|Q)P(Q) = \prod_{t=1}^{T} P(r_t|q_t) \times \prod_{t=1}^{T} P(o_t|q_t) \times \prod_{t=1}^{T} P(q_t|q_{t-1})$

But need to be careful about "feature selection", otherwise waste modeling power on features that don't matter for classification. e.g. imagine rt is random or redundant. (model assumes feature independence)

Local Model Demerit: Label Bias

- POS tagging example
- Observation: The robot wheels are round

Due to per-state normalization: if P(V|N,wheels) > P(N|N,wheels), MEMM stuck in upper path regardless of observation

Example from Wallach (2002). Efficient Training of Conditional Random Fields. M. Sc. thesis, Univ. of Edinburgh

Label Bias Problem

- The problem: States with low-entropy next-state distributions tend to ignore observations
 - due to per-state normalization, i.e. transitions leaving a state only compete against each other
- Solution:
 - need global model that accounts for whole sequence
 - amplify/dampen probability at individual transitions: finitestate model with un-normalized transition probability

Outline

- What is Structured Prediction; Why is it relevant to NLP?
- Generative vs. Discriminative; Local vs. Global
- Models for sequence labeling
 - HMM, MEMM

• CRF, Structure Perceptron, Structured SVM

Intuition: use log-linear model like MEMM, but have global normalization

- Define distribution over all possible sequences of Q, conditioned on O
 - (may be intractable depending on assumptions)

$$P(Q|O) = P(q_1, q_2, \dots, q_N | o_1, o_2, \dots, o_N)$$

\$\propto \exp(\sum_k \theta_k \cdot f_k(q_1, q_2, \ldots, q_N, o_1, o_2, \ldots, o_N))\$

Linear-Chain Conditional Random Field (CRF)

$$P(Q|O) \propto \exp(\sum_{i,k} \theta_k \cdot f_k(q_i, q_{i-1}, O) + \sum_{i,j} \theta_j \cdot f_j(q_i, O))$$

Training is similar to what we derived for log-linear models, but need efficient inference (Dynamic Programming) to compute partition function over all sequences

General CRF

Cliques c define variables that should interact

$$P(Q|O) = \frac{\exp(\sum_{c,k} \theta_k \cdot f_k(c, Q^{(c)}, O))}{\sum_{Q'} \exp(\sum_{c,k} \theta_k \cdot f_k(c, Q'^{(c)}, O))}$$

• Distribution over all possible output structures

What if we don't need a probabilistic model?

$$P(Q|O) = \frac{\exp(\sum_{c,k} \theta_k \cdot f_k(c, Q^{(c)}, O))}{\sum_{Q'} \exp(\sum_{c,k} \theta_k \cdot f_k(c, Q'^{(c)}, O))}$$

• We only need to output a single "best" Q given O

$$S(Q|O) = \sum_{c,k} \theta_k \cdot f_k(c, Q^{(c)}, O)$$
$$\hat{Q} = \arg\max S(Q|O) = \arg\max \sum \theta_k \cdot f_k(c, Q^{(c)}, O)$$

Structured Perceptron

• Define features over structure:

$$\sum_k \theta_k \cdot f_k(Q, O)$$

- Training procedure:
 - While not converged:

G(O) denotes all output structure of O. Only requirement is a decoder that can search over this G(O)

• Draw training sample (Q, O)

• Decode:
$$\hat{Q} = \arg \max_{Q' \in G(O)} \sum_k \theta_k \cdot f_k(Q', O)$$

• If incorrect $Q \neq \hat{Q}$; update $\theta_k += f_k(Q, O) - f_k(\hat{Q}, O)$

Structured Perceptron for HMM T $P(o_t|q_t) \times P(q_t|q_{t-1})$ P(O,Q) =t=1T $\sum \log P(o_t|q_t) + \log P(q_t|q_{t-1})$ $\log P(O, Q) =$ t=1 $\sum_{s} \log P(o_t | q_t = s) Count(s)$ $\sum_{s,s'} \log P(q_t = s | q_{t-1} = s') Count(s,s')$ +

Weights **0**

Features f

Structured Perceptron vs. CRF

- If we use SGD update for CRF, then the update turns out very similar (modulo regularization, learning rate, etc.)
- Structured Perceptron

$$\theta_k \mathrel{+}= f_k(Q, O) - f_k(\hat{Q}, O)$$

Argmax over all output structures

• CRF

$$\theta_k \mathrel{+}= f_k(Q, O) - E_Q[f_k(Q, O)]$$

Expectation over all output structures

Margin

- Our structured perceptron implements:
 - Score(correct structure) ≥ Score(any other structure)
- We can make this more robust by adding a margin:
 - Score(correct structure) ≥ Score(any other struct) + Positive constant
- Further, we can incorporate domain knowledge:
 - Score(correct structure) ≥ Score(very bad structure) + Large constant
 - Score(correct structure) ≥ Score(not bad structure) + Small constant

Structured Support Vector Machine (Large-Margin Structured Classifier)

- We desire scores such that these constraints are satisfied $\theta^T f(Q,O) \geq \theta^T f(Q',O) + l(Q,Q') \quad \forall Q'$
- Rather than enumerating all constraints, we only need the max: $\theta^T f(Q, O) \ge \max_{Q'} [\theta^T f(Q', O) + l(Q, Q')]$
- Update similar to structured perceptron, but different negative example:
 Loss-augmented inference: assumes your decoder can

θ

$$k += f_k(Q, O) - f_k(Q^*, O) \quad \text{exploit structure in } I(Q,Q')$$
$$Q^* = \arg \max_{Q'} [\theta^T f(Q', O) + l(Q, Q')]$$

Big picture: Structured Perceptron/SVM

- Simple learning procedure. All you need is a decoder
- Discriminative (allows arbitrary features) and Global (considers all decisions jointly)
- Caveat: Decoder has to search over all large output space. Often feature definition affects tractability

Another example: Dependency Parsing with Maximum Spanning Trees

 Define the score of a dependency parse as the sum of all edge scores

$$predicted tree = \arg \max_{all \ trees} \sum_{edge \in tree} edgescore(i, j)$$
$$= \arg \max_{all \ trees} \sum_{edge \in tree} \sum_{k} \theta_k f_k(i, j)$$

Argmax can be computed by maximum spanning tree algorithm

Summary

	Generative	Discriminative
Local		MEMM: Label bias problem
		Note: Many Recurrent Neural Net models have label bias too
Global	HMM : Cannot incorporate arbitrary features	CRF : Extension of log-linear model to structured output space
		Structured Perceptron : Just need a decoder. My 1st bet
		Structured SVM: Incorporates concept of margin

Recurring theme: efficient computation that exploits structure. This is where domain knowledge helps!