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Intro: A few thoughts on “Digital
humanities”



What is “digital humanities”?

Some responses:

e “an idea that will increasingly become invisible” -Stanford

e “aterm of tactical convenience” -UMD

e “I don’t: I'm sick of trying to define it” -GMU

e “a convenient label, but fundamentally | dont believe in it”
-NYU

e “an unfortunate neologism” -Library of Congress



What is “digital humanities”?

Themes at DH2019

e Visualization

Geographic information systems
Social and ethical issues

Education

VR, maker spaces
e OCR
Machine learning
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Working definitions

Digital humanities
Traditional inquiries enabled by computational intelligence

Traditional scholar
Academic from field that doesn’t typically employ quantitative
methods (History, Literary Criticism, ...)

(Traditional) scholarly dataset
Data assembled by a traditional researcher in the field

Computational researcher
Design and bring machine learning models to bear on datasets
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Why is collaboration rare?

Traditional scholars have insight into the daia

e Data is painstakingly gathered and coveted

e Hypotheses are subtle but not numerically evaluated

e May publish one or two papers during PhD, but dissertation
is primary focus

Computational researchers can pair data with appropriate
models

e Data is aggressively shared to encourage rigorous
evaluation

e Tasks are often shallow and prespecified

e Publish multiple papers per year
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Topic models: a success story

Widely used

e Low barrier to entry: everyone has “documents”
e Little expertise required to train
e Output easy to visualize and interpret

Widely abused

e Deceptively easy to use: it will always give you something
e You can always find “patterns”: confirmation bias abounds
e Older than some undergrads: LDA from early 2000s



A guiding challenge:

Can we leverage sophisticated modeling techniques without
losing the advantages that popularize topic models and
recreating some of the same bad community practices?



Aside: Traditional Scholars are Knowledge Workers

Financial analysts, investigative reporters ...

e Concerned with specific domains

Need to gather and understand datasets

Construct and reason over knowledge bases

Wide range of technical abilities

e The DH story is relevant to industry, government, etc



Graphs and Autoencoders




General relational data

3
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Common format: JSON

[
{"name” : "John”, “age” : 23, "gender” : "M’} ,
{"name” : ”"Jane”, “age” : 31, “gender” : "F”},
{”business” : "Crazy Ray’s”},
{"make” : "Honda”, ”price” : 25000,
owned_by” : 0, "sold_by” : 2},
{"make” : ”"Ford”, ”price” : 35000,
owned_by” : 1, ”"sold_by” : 2}
]
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Let’s design a model that naturally adapts
to the data structure
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Building-blocks for modeling relational data

Encoders, decoders, and autoencoders
Capture the entities and fields

Graph convolutional networks
Capture the relationships
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Encoders and decoders are often paired
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If the goal is to reconstruct the input, it’s an autoencoder

Studies Recites
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*coder summary

¢ An encoder transforms data into a fixed-length
representation

e A decoder takes a fixed-length representation and
generates data

e An autoencoder is an encoder and decoder working
together to preserve data through a bottleneck
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On to graph convolutions. ..
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Normal 1D CNN

Grid (image,
text ...)
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Normal 1D CNN
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Normal 1D CNN
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Graph convolutional network (GCN)

Graph nodes
(e.g. entities)
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Graph convolutional network (GCN)
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GCN summary

e Extends CNNs from grids to graphs
¢ Information passes along edges
e Each GCN layer allows nodes to see one further “hop”
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Modeling relational data

e Encoders, decoders, autoencoders
e Graph convolutional mechanism
e Combine these to match the data being modeled
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Graph Entity Autoencoder (GEA)
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Graph Entity Autoencoder (GEA)
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How can we use a trained model?

Compute distance between two entities

Find flat or hierarchical clusters of entities

Generate likely value of missing field

Detect an improbable value of a present field

Observe response of one field to another

23



Motivating study: Post-Atlantic
Slave Trade




Shipping manifests
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Shipping manifests
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Shipping manifests
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Shipping manifests
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Fugitive notices
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Some numbers

45k manifest entries spanning five cities

11k fugitive notices from 70 gazettes

28k unique slave names

7k unique owner names

Not big data, but thousands of studies like this at a
research university!
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Difficulties with data in the wild
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Difficulties with data in the wild

e Unnormalized

e People/places/things recorded many times

e “What's the age/height/sex distribution of escapees?”
¢ Noisy

e Vessel type: Bark, Barke, BArque, Barque, Barques

e Slave name: “Nelly’?, Nelly’s child”, “not visible”
e Owner sex: 3k missing

e Underspecified entities

e Majority of slaves have no last name
e Can't tell if two “Johns” are the same person
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What might a historian want to do with this data?

e Follow one slave throughout their life
e Group owners according to the nature of their workforce

e Map out trade “ecosystems” of sellers, shippers, owners,
etc

e Determine what drove valuation in transactions and
rewards

e Reconstruct slave families when there are no last names

28



Ask the traditional scholar to follow some simple guidelines

when gathering data
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Entities, field types, and relations

Traditional scholarly data

slave_name Jim
slave_age 20
owner_name Jane
owner_sex F
vessel_name Uncas
vessel_type  Brig
voyage_date 6/2/1823
voyage_dest 29.9,90.0
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Entities, field types, and relations
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Entities, field types, and relations

Strings

Slave_name Jim
slave_age 20
owner_name Jane
owner_sex F
vessel_name Uncas
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Entities, field types, and relations

More complex fields

slave_name Jim
slave_age 20
owner_name Jane
owner_sex F
vessel_name Uncas
vessel_type  Brig
voyage_date 6/2/1823

voyage_dest 29.9,90.0
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owner_name Jane
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Entities, field types, and relations

Entities

slave_name Jim
slave_age 20
owner_name Jane
owner_sex F
vessel_name Uncas
vessel_type  Brig
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voyage_dest 29.9,90.0
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Entities, field types, and relations

Slave-to-owner

slave_name  Ji
slave_age 20
owner_name Jan

owner_sex F
vessel_name Uncas
vessel_type  Brig

voyage_date 6/2/1823
voyage_dest 29.9,90.0

30



Entities, field types, and relations

Vessel-to-voyage, slave-to-voyage

slave_name
slave_age
owner_name
owner_sex
vessel_name
vessel_type

voyage_date
voyage_dest 29.9,90.0

30



Entities, field types, and relations

slave_name  Ji
slave_age 20
owner_name Jan

owner_sex F /\
vessel_name Uncas Row 1
vessel_type  Brig

voyage_date 6/2/1823
voyage_dest 29.9,90.0
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Example data point: one graph component
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Train a GEA model...
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Example insights looking at most-similar entities

Mistranscriptions

Baltiomre, Austin Woolfolk +<= Baltimore, Austin Woolfolk
New Orleans, William Wiliams <= New Orleans, William Williams

Semantically-equivalent variants

Baltimore, George Y. Kelso < Baltimore, Kelso & Ferguson
New Orleans, Leon Chabert <« Louisiana, Leon Chabert

Same slave transported multiple times

Louisa, F, 16yo <
Waters, F, 14yo &
Kesiah, F, 20yo <
Taylor, F, 15y0 &

Louisa, F, 17yo
Waters, F, 15y0
Kesiah, F, 22yo
Taylor, F, 16yo
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Another application: Authorship
attribution of the Hebrew bible




Transmission of a text: the “Documentary Hypothesis”

Hebrew Bible sources timeline (Jewish Canon)
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Hypothesis as pointers into document structure

(Bible)
(Book 1) (Book 2)
P
Chapter 1)(Chapter 2)
P

(Verse 1) (Verse 2)

Redactor

(Word D (Word 2)
2\

[I\/Iorph 1] (Morph 2]
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Assume the hypothesis, see how various models and features
learn it as a supervised classification problem
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Thomas Mendenhall: The Characteristic Curves of Compo-

sition

SCIENCE.~

SUPPLEMENT

FRIDAY. MARCH 11, 1887,
(ERISTIC CURVES OF COM-
POSITION.

Avageros Didiomai someebers remaris @
€hiuk it is in his * Budget of paradoxes
Soma tioe somelody wil fntliuls 8 comparison
among writers i regard to the average length of

THE CHARAC:

a2 of o deintaly Tghor onder.
It also had the advantage of including, in its ap-
iation, ll that was necesary o the doernina.
on of mean word-length 50 that, in reality, it
furaishod two distinct test

Preliwinary trials of the method have toraished

words used in composition, and that it may be
s the author of a book, o

available, a more comprehensive and satisfactory
thoil of analysis than that based simply wpon

—
L]
1 1071 21 151
Fie, 5, — IR 03K THOGSAND oK 1 Qv Tt

useful as & method of analysis leading to identi-
o T e
T S i et 37
ol i o ptons b et e




Mosteller and Wallace: Inference in an Authorship Problem

The Federalist papers

e 85 articles written by Hamilton, Madison, and Jay
e 12 are unattributed
e Frequency analysis of function words determined Madison

as author
38



Back to the Documentary Hypothesis

Problems
e The “authors” are also editors, redactors, synthesizers
...they interact in context-dependent ways
e There is no predefined segmentation into “articles”

e We know more than function-words are important (e.g.
name of God)

Solutions

e Limit vocabulary to words that are used frequently by all
authors

e Employ a GCN to exploit the document structure
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GEA predicts the author slightly better ...

Model | F-score

LR 41.39

MLP | 47.45

GEA | 48.60
Gold Guess

J E P 1D 2D nD R O

J 100 8 7 0 O O 3 O
E 22 53 8 0 0O O o0 o0
P 13 5 77 0 1 0 4 0
1D 2 o 2 7 1 0O 0 O
2D 2 2 1 0 5 0 o0 O
nD 0 0O o0 1 O 0 0 o0
R 3 3 11 0 0 0 33 O
O 2 o 1 0 0 O 1 0
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Error analysis

Sentiment and in-context word senses
e “wife” shows up as polygamous in older but monogamous
in newer sources

e Redactor’s positive view of Aaron+Moses, violent story of
rebellion

Narrative continuity
e Abraham and Isaac story thought to originally end with
sacrifice, changed by the Redactor

e “it was the season for grapes”
(travel and geographic locations)
“They broke off some grapes.”
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Ongoing work




Visualizing results
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Quick plug: come to David Mimno’s talk!

e Nov. 15 at noon (Hackerman B17)
e CS Professor at Cornell
e Rare CS faculty working in DH (topic modeling)
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